Машины непрерывного транспорта
Машины непрерывного транспорта
Классификация и основные виды транспортирующих машин
Транспортирующие машины различаются:
по способу передачи перемещаемому грузу движущей силы:
действующие при помощи механического привода;
самотечные устройства, в которых груз перемещается под действием собственной силы тяжести;
устройства пневматического и гидравлического транспорта, в которых движущей силой является поток воздуха или струя воды
по характеру приложения движущей силы и конструкции: с тяговым элементом (лентой, цепью, канатом); без тягового элемента
по роду перемещаемых грузов: для насыпных и для штучных грузов
по направлению и трассе перемещения грузов:
вертикально замкнутые, которые располагаются в вертикальной плоскости и перемещают грузы по трассе, состоящей из одного или нескольких прямолинейных отрезков;
горизонтально замкнутые, которые располагаются в одной горизонтальной плоскости на одном горизонтальном уровне по замкнутой трассе;
пространственные, которые располагаются в пространстве и перемещают грузы по сложной пространственной трассе с горизонтальными, наклонными и вертикальными участками
По характеру движения грузонесущего (рабочего) элемента различают конвейеры с непрерывным движением; с периодическим (пульсирующим) движением (поступательное, возвратно-поступательное, вращательное, колебательное)
Способы перемещения грузов
На непрерывно движущемся несущем элементе в виде сплошной ленты или настила (ленточные, пластинчатые, цепенесущие конвейеры);
В непрерывно движущихся рабочих элементах в виде ковшей, коробов, подвесок, тележек (ковшовые, подвесные, тележечные, люлечные конвейеры, эскалаторы, элеваторы);
Волочением по неподвижному желобу или трубе непрерывно движущимися скребками (скребковые конвейеры);
Волочением (проталкиванием) по неподвижному желобу вращающимися винтовыми лопастями (винтовые конвейеры);
Пересыпанием и продольным перемещением во вращающейся трубе – гладкой или с винтовыми лопастями (транспортные трубы);
Скольжением под действием сил инерции или перемещением микробросками по колеблющемуся желобу или трубе (качающиеся инерционные и вибрационные конвейеры);
На колесах или на тележках по путям, уложенным на полу помещения вне конструкции конвейера (грузоведущие конвейеры);
Поступательный перенос на отдельные фиксированные участки по длине (шагающие конвейеры);
В закрытой трубе непрерывным потоком во взвешенном состоянии в струе движущегося воздуха или отдельными порциями под действием струи воздуха (установки пневматического транспорта, пневмопочта, пневмоконтейнеры);
В желобе или трубе под действием струи воды (установки гидравлического транспорта);
Перемещением ферромагнитных грузов в трубе или желобе под действием бегущего магнитного поля (соленоидные конвейеры)
Характеристика производственных, температурных и климатических условий окружающей среды
При проектировании и эксплуатации машин непрерывного транспорта необходимо учитывать производственные, температурные и климатические условия окружающей среды. Окружающая среда характеризуется составом и массовой концентрацией пыли, влажностью воздуха, насыщением его парами химических веществ, газами, вредно действующими на детали конвейера; температурой (климатическими условиями); пожаро — и взрывоопасностью
Исполнения конвейеров для районов с климатом:
У – умеренным;
ХЛ – холодным;
ТВ – влажным тропическим;
ТС – сухим тропическим;
Т – сухим и влажным тропическим;
О – общеклиматическое исполнение (на суше).
Если конвейер располагается в нескольких помещениях с различными производственными и температурными условиями, то в качестве расчетной базы применяют наихудшие условия эксплуатации
Характеристика транспортируемых грузов
Насыпные грузы – это массовые навалочные кусковые, зернистые, порошкообразные и пылевидные материалы, хранимые и перемещаемые навалом (руда, уголь, торф, щебень, зерно, песок, цемент)
Свойства насыпных грузов: кусковатость (размер и форма частиц); плотность; влажность; угол естественного откоса; подвижность частиц; абразивность; крепость; коррозионность; липкость; ядовитость; взрывоопасность; способность самовозгораться, слеживаться, смерзаться
Кусковатость (гранулометрический состав) – это количественное распределение частиц груза по крупности
Насыпной груз подразделяется на следующие группы:
пылевидный (цемент) до 0,05 мм
порошкообразный (мелкий песок) 0,05–0,49 мм
зернистый (зерно) 0,5–9 мм
мелкокусковой (щебень) 10–60 мм
среднекусковой (уголь) 61–199 мм
крупнокусковой (руда) 200–500 мм
особо крупнокусковой (камни, валуны) более 500 мм
Плотность груза – это отношение его массы к занимаемому объему
Распределение насыпных грузов по плотности
Группы грузов | Плотность ρ, т/м 3 |
Легкие (торф, кокс, мука, древесные опилки) | До 0,6 |
Средние (зерно, каменный уголь, шлак) | 0,6 – 1,6 |
Тяжелые (порода, гравий, щебень, песок) | 1,6 – 2,0 |
Особо тяжелые (руда, камень) | 2,0 – 4,0 |
Влажность насыпного груза ωв (%) – это отношение массы содержащейся в грузе воды к массе высушенного груза:
ωв = (mв – mс) 100 / mс,
где mв и mв – массы порций влажного и просушенного грузов
Угол естественного откоса груза φ – угол между образующей конуса из свободно насыпанного груза и горизонтальной плоскостью
Различают углы естественного откоса груза в покое φ и в движении φ, φ ≈ 0,35φ
Подвижностью частиц груза определяется площадь сечения груза на движущейся опорной плоскости (лента или настил конвейера)
Группы подвижности частиц грузов
Подвижность частиц груза | Насыпные грузы | Угол естественного откоса груза в покое φ, град | Расчетный угол естественного откоса груза в движении φ, град |
Легкая | Апатит, сухой песок, сухая галька, пылеуголь | 30 – 35 | 10 |
Средняя | Влажный песок, формовочная земля, каменный уголь, камень, щебень, торф | 40 – 45 | 15 |
Малая | Сырая глина, гашеная известь | 50 – 56 | 20 |
Абразивность – это свойство частиц насыпного груза изнашивать со-прикасающиеся с ним во время движения рабочие поверхности. По степени абразивности насыпные грузы делятся на группы:
А – неабразивные;
В – малоабразивные;
С – средней абразивности;
D – высокой абразивности
Крепость (крепкость) груза характеризуется коэффициентом крепости:
kкр = σсж / 10,
где σсж – предел прочности образца груза при сжатии (МПа)
Слеживаемость – способность насыпного груза (глина, соль, цемент) терять подвижность при длительном хранении
Липкость – способность насыпного груза (глина, мел) прилипать к твердым телам во влажном состоянии
Конвейерные ленты
Резинотканевая лента
Преимущества резинотканевой ленты: универсальность выполнения стыкового соединения; повышенная стойкость к продольным порывам; эластичность и высокая амортизационная способность при динамических нагрузках. Недостатки резинотканевой ленты: большое относительное удлинение (до 4%); увеличенные диаметры барабанов при большом числе прокладок
Резинотросовая лента
Преимущества резинотросовой ленты: высокая прочность; малое относительное удлинение при рабочих нагрузках (до 0,25%); повышенный срок службы. Недостатки резинотросовой ленты: большая масса; сложность выполнения стыкового соединения; склонность к продольным порывам и перегибам в вертикальной плоскости
Ленты серии WINPIPE — бесшовные резинотканевые ленты с гладкой и рифленой рабочей поверхностью, которые имеют абсолютно одинаковую толщину и прочность во всех частях ленты, исключительно прямолинейный пробег; улучшенную гибкость, которая позволяет использовать шкивы с меньшим диаметром. Бесшовные ленты выпускаются кольцами, длинной до 24 м, шириной до 2200 мм, прочность лент до 1250 Н/мм. Ленты серии WINPIPE применяются на конвейерных весах, магнитных сепараторах, ленточных питателях, дозаторах и другом оборудовании
Перфорированные ленты
Ленты-сито (перфорированные ленты) используются для обезвоживания сыпучих материалов, для пескоструйных и дробеструйных установок; усилены поперечными ребрами жесткости; изготавливаются из резины и полихлорвинила в открытом и в закольцованном исполнении
Металлические конвейерные ленты
Металлические конвейерные ленты выполняются сплошными стальными и проволочными (сетчатыми)
Стальные ленты изготавливают из углеродистой стали 65Г и 85Г и из коррозионностойкой стали и разделяют на: цельнокатанные шириной 400–1200 мм; продольно-стыкованные, соединенные из нескольких отдельных узких лент сваркой
Толщина стальных лент составляет 0,8–1,0 мм, прочность на разрыв 900 МПа. Стальную ленту из углеродистой стали применяют для транспортирования горячих грузов t = 120 ºС при неравномерном и до 500 ºС при равномерном нагреве в печи. Конвейеры со стальной лентой применяют на предприятиях пищевой промышленности; при производстве бетонных плит, листов пластмассы, в моечных, сушильных и холодильных установках; гладкая поверхность стальной ленты позволяет транспортировать на ней липкие и горячие грузы; концы стальной ленты соединяют внахлестку заклепками или сваркой. Стальная лента на 30% легче и почти в 5 раз дешевле прорезиненной (при равной ширине и прочности)
Сетчатые (проволочные) ленты применяются для транспортирования штучных и кусковых грузов через закалочные, нагревательные, обжиговые и сушильные печи; для выпечки хлебных и кондитерских изделий; в моечных, обезвоживающих, охладительных, сортировочных установках; в камерах шоковой заморозки продуктов; при производстве стеклянных и керамических изделий.
Сетчатые ленты выполняются плоскими без бортов и с бортами высотой 90–100 мм, собираются из отдельных проволочных элементов (звеньев), обладают высокой прочностью, малым удлинением, равной прочностью, как в стыках, так и в любом другом сечении и могут огибать барабаны малого диаметра. Металлические конвейерные сетки находят широкое применение в современной промышленности, широкий диапазон температур от –60°С до +1200°С и различные варианты конструкции позволяют использовать конвейерные сетки в тех условиях, когда другие материалы не работают
Полимерные конвейерные ленты имеют рельефную рабочую поверхность и предназначены для использования на наклонных транспортерах, так как имеют низкий коэффициент скольжения, основная область применения – конвейеры для упаковки, транспортирования грузов с неровной (необработанной) поверхностью и органических продуктов россыпью. Подбор материала ленты осуществляется в зависимости от области применения: полипропилен, полиэтилен, ацетат, нейлон
Различные добавки в состав полимеров позволяют подобрать ленту, которая будет соответствовать требуемым условиям эксплуатации: устойчивость к высоким (+150 °С) или низким (–70 °С) температурам, влажности, абразивности или возможности порезов; устойчивость к минеральным маслам и жирам, химическая устойчивость, антистатичность.
Полимерные конвейерные ленты применяются в различных областях промышленности: пищевой, текстильной, деревообрабатывающей, аэрокосмической, нефтехимической, в машиностроении
Преимуществами полимерных лент являются высокое качество, обеспечивающееся использованием высокотехнологичных материалов, которым могут быть заданы нужные свойства; экологически чистое сырье; широкий температурный диапазон (от –73 до +150 °С); удобство и легкость очистки
Модульные полимерные ленты применяются для транспортирования конвейерами продуктов пищевой, легкой, деревообрабатывающей, текстильной промышленности, полиграфического производства, упаковки и в кондитерской промышленности.
Модульные ленты выполняются из термопластичных пластмассовых модулей, которые соединены между собой прочными пластмассовыми стержнями, цельная конструкция из пластмассы обеспечивает долгий срок службы, кирпичное соединение создает возможность для сборки различной ширины и обеспечивает высокую боковую и диагональную прочность и жесткость
При использовании модульных лент имеется возможность изменения длины ленты добавлением или удалением модулей при ее постепенном вытягивании, наращивании или сокращении длины самого конвейера.
Преимуществами модульных полимерных лент являются большое количество и разнообразие их типов; широкий диапазон рабочих темпера-тур (от –70°С до +190°С); удобство монтажа и демонтажа; ремонтнопригодность; большой диапазон варьирования площади контакта продукта с лентой (от 10% до 90%); возможность обработки моющими горячими и активными растворами; допуск к контакту с пищевыми продуктами (нетоксичны); устойчивость к химическим веществам
Исследование угла естественного откоса строительных и рудных материалов при проектировании и разработке строительно-дорожных, горных машин и оборудования
Одним из важнейших показателей, необходимых при расчётах основных параметров фрикционных сепараторов и транспортирующих машин является угол естественного откоса горных пород, который образуется свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью (иногда используется термин «угол внешнего трения»).
Частицы материала, находящегося на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости частиц, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала. По углам естественного откоса пород определяют максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.
Угол естественного откоса для крупнокусковых фракций превышает углы мелкозернистого материала: например, угол естественного откоса криворожской руды крупностью 40–70 мм составляет 45є, а для фракции 50–12 мм – 36є. Н.Л. Гольдштейн утверждает, что, попадая на поверхность ранее засыпанных материалов, куски продолжают движение по откосу, причём, чем больше их скорость в момент падения, тем энергичнее и дальше они перемещаются по поверхности откоса. Скорость же движения материалов увеличивается с высотой их падения.
Рис. 1 Схема определения угла естественного откоса по С.В. Полетаеву
Различают угол естественного откоса груза в покое и в движении. Величина угла естественного откоса в покое больше, чем в движении. В табл. 1 приведены некоторые усредн ённые данные по углам естественного откоса некоторых промышленных материалов.
Для определения угла естественного откоса частиц используют приборы С.В. Полетаева (рис. 1) или Н.Г. Тетянко (рис. 2).
Рис. 2 Схема определения угла естественного откоса по Н.Г. Тетянко
Измерения угла естественного откоса рекомендуется проводить путём прикладывания транспортира с вращающейся стрелкой и линейкой (рис. 3).
Рис. 3 Угломер ската материала
По методу С.В. Полетаева сыпучий материал засыпается через воронку, установленную на штативе (на рис. не показано). Штатив с воронкой используется для удобства проведения опытов, к тому же с его помощью можно изменять высоту, с которой будет ссыпаться материал. Высыпанные частицы располагаются на столе в виде конуса.
На рис. 4 представлен рабочий процесс определения угла естественного откоса дробленой медно-никелевой руды (по методу С.В. Полетаева) с использованием угломера ската материала.
Рис. 4 Определения угла естественного откоса
По методу Н.Г. Тятенко сыпучий материал насыпается в ящик со стеклянными стенками, затем ящик опрокидывается и ставится на стол. При этом частицы располагаются в ящике так, что на стеклянном экране линия поверхности частиц определит их угол естественного откоса (который также измеряется транспортиром).
Угол естественного откоса частиц, так же как и угол трения характеризуется коэффициентом внутреннего трения частиц, т.е. коэффициентом трения частицы по частице при послойном его движении.
Вышеизложенное позволяет сделать вывод, что оценку того или иного метода определения угла естественного откоса следует производить исходя из условия соблюдения при опытах постоянства и однородности факторов, влияющих на величину показателя угла естественного откоса, а именно: давления, скорости, площади соприкосновения трущихся поверхностей и др.
Целесообразно применять для определения угла естественного откоса такой прибор, который по принципу своего действия более или менее соответствует рабочему органу изучаемой машины.
Для исследований были приняты следующие материалы: щебень, добытый в карьере рудника «Медвежий ручей » Норильского промышленного района. При проведении опытов использовались отсортированные фракции: >1 мм, 1–2,5 мм, 2,5–5 мм, 5–10 мм и 10-20 мм. Для исследования угла естественного откоса рудного материала использовалась медно-никелевая руда, добытая на руднике «Октябрьский» Талнахского месторождения Норильского промышленного района. При проведении опытов использовались те же фракции руды, что и при исследовании щебня.
Результаты исследования угла естественного откоса щебня приведены в табл. 2 и на рис. 5 и 6.
Полученные закономерности и значения углов естественного откоса будут полезны при проектировании наклонного ленточного устройства для разделения строительных сыпучих материалов. Они также могут быть полезны разработчикам транспортирующих машин, позволят определить максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.
Учитывая отдалённость и малую степень исследованности Норильского промышленного района, полученные нами результаты представляют собой довольно интересный научный материал и могут послужить справочными данными не только для разработчиков фрикционных сепараторов, но и для конструкторов и разработчиков транспортирующих машин.
Метод угол естественного откоса грунта
Устойчивостью земляных сооружений называется их способность сохранять проектную форму и размеры и обусловливается равновесием масс под действием внешних и внутренних сил. Устойчивость зависит от угла естественного откоса грунта, который образуется плоскостью откоса с горизонтальной плоскостью поверхности грунта. Величина угла естественного откоса определяется опытным путем.
Крутизна откосов насыпи или выемки характеризуется отношением высоты откоса Н к его заложению или тангенсом угла наклона откоса к горизонту
(рис. 3. 1).
Наибольшая крутизна откосов зависит от высоты насыпи или глубины выемки, характеристики грунтов (угла внутреннего трения, сцепления, влажности) и условии производства работ (рис. 3.2),
Рис. 3.1. Элементы откоса
о —насыпи; б – выемки; Я-высота откоса; 1-проекция откоса на горизонтальную плоскость; а —крутизна откоса
Рис. 3.2. Поперечные профили земляного полотна
Рис. 3.3. Принципиальные схемы типов креплений
а — консольного; б — анкерного; в — консольно-распорного; г — распорного; д — подносного; е — подвесного; 1 — щиты (доски); 2 —стойки (сваи); 3 — анкеры; 4 — распорки; 5 — подкосы; 6 — упоры (якоря); 7 —опора; 8 — кольцо
Способы крепления откосов временных выемок. При ведении земляных работ на территории действующих предприятий в стесненных условиях или при наличии грунтовых вод, плывунов и при других сложных гидрогеологических условиях необходимо производить крепление траншей и котлованов. Необходимость креплений устанавливается проектом; устройство креплений вертикальных стенок траншей и котлованов требует значительных затрат ручного труда, поэтому крепление производят только в том случае, когда это экономически целесообразно или когда не представляется возможным устройство откосов.
Рис. 3.4. Шарнирно-винтовые крепления
В зависимости от вида грунта, ширины и глубины выемок и сроков службы применяются различные типы креплений. Для узких траншей глубиной 2—4 м в сухих грунтах применяются горизонтально-рамное крепление, состоящее из стоек, горизонтальных досок или дощатых (сплошных и несплошных) щитов и распорок, прижимающих доски или щиты к стенкам траншеи. Распорки устанавливают по длине траншеи на расстоянии 1,5—1,7 м одна от другой и по высоте через 0,6— 0,7 м.
В тех случаях, когда исключается возможность установки распорок (при разработке широких котлованов) , применяют анкерные или подкосные крепления.
Для устройства анкерных креплений вдоль стенок котлована забивают стойки на глубину 0,5—1 м, сверху оттягивают их анкерными тягами в виде двух пластин, прикрепленных к наклонно забитой свае, а за стойками устанавливают щиты или дощатую стенку.
Подкосные крепления состоят из дощатых щитов, устанавливаемых вдоль откосов стоек, которые удерживаются подкосами, и упоров, забиваемых у основания подкосов.
Консольно-распорные крепления характеризуются тем, что стойки (сваи) удерживаются главным образом путем защемления нижней их части, забитой в дно выемки. Наиболее широко применяется крепление из деревянного или стального шпунта. При безраспорном креплении стойки располагаются через определенный шаг, а в шпунтовом их забивают без интервала. В качестве шпунта могут быть использованы стальные профили.
При анкерном креплении стойки в верхней части кроме защемления закрепляются еще и анкерами. В отличие от анкерного крепления при консольно-рас-порном защемлении стойки крепят вверху распорками.
Подвесные крепления имеют горизонтальные элементы, выполняющие роль упорных прогонов, которые подвешивают к опорной раме, укладываемой на поверхности выемки.
Этот вид крепления наиболее часто применяется для крепления шурфов прямоугольного сечения глубиной до 2—5 м в зависимости от назначения.
В сыпучих и неустойчивых грунтах ставят распорные или срубовые крепления из пластин и брусьев (рис. Ш.З).
В вязких грунтах и при сильном притоке воды забивают ограждающие шпунтовые стенки из досок или брусьев, укрепляемые распорками. На поверхности земли по размерам колодца укладывают деревянную брусчатую раму, а затем с наружных сторон брусьев рамы, вплотную к ним, забивают доски длиной 1,5—2 м с некоторым наклоном и под защитой забитых досок роют котлован. После заглубления на 1 — 1,5 м на дне колодца устанавливают вторую такую же раму и забивают-второй ряд досок.
В таком же порядке работу продолжают до достижения необходимой глубины.
Крепление вертикальных стенок траншей глубиной до 3 м должно быть, как правило, инвентарным (рис. Ш.4). Щиты обычно устанавливают вертикально и распирают их инвентарными металлическими распорками. В связных грунтах естественной влажности устанавливаются щиты с прорезями, а в грунтах с повышенной влажностью применяются сплошные щиты.
Необходимость крепления вертикальных стенок траншей и котлованов или разработка их с откосами обосновывается проектом в зависимости от глубины, состояния грунтовых вод и других местных условий.
Нормы предусматривают разработку в определенных случаях траншей и котлованов с вертикальными стенками без крепления при отсутствии грунтовых вод, в грунтах естественной влажности. Глубина выемки без крепления не должна превышать: в песчаных и гравелистых грунтах— 1 м, в супесях— 1,25; в суглинках и глинах— 1,5 м; в особо плотных нескальных грунтах—2 м.
Разработка траншей с вертикальными стенками роторными и траншейными экскаваторами в связных грунтах (суглинках, глинах) допускается без крепления на глубину не более 3 м.
Работы по сооружению фундаментов, прокладыванию инженерных сетей и т. п. в траншеях с вертикальными стенками без креплений следует вести немедленно вслед за выемкой грунта во избежание, его осыпания или оползания.
При рытье в указанных условиях более глубоких траншей и котлованов без креплений необходимо устраивать откосы, крутизну которых определяют по СНиП.
Навигация:
Главная → Все категории → Земляные работы
Общие положения. Определение угла естественного откоса горных пород
Определение угла естественного откоса горных пород
Лабораторная работа № 9
1.1. Угол естественного откоса (УЕО) – это предельный максимальный угол наклона поверхности откоса к горизонту, при котором порода в откосе находится в устойчивом состоянии – не осыпается, не обваливается, не оползает. УЕО, наряду с другими показателями, характеризует механические свойства пород, т. е. поведение пород под влиянием приложенных внешних усилий (в данном случае сил гравитации).
1.2. УЕО характеризует устойчивость в откосах, главным образом, раздельнозернистых пород (пески, гравий и т. п.), в некоторых случаях глинистых пород.
1.3. УЕО воздушно-сухих рыхлых пород находится в пределах от 28 o до 46 o . Величина УЕО в песчаных и других раздельнозернистых породах определяется только сопротивлением внутреннего трения, т. е. трения возникающего между частицами при их относительном перемещении. При увеличении содержания в породах глинистого материала – в них будут возникать структурные связи, и УЕО будет зависеть также и от сил сцепления частиц породы.
1.4. Среди факторов, влияющих на величину УЕО, можно отметить следующие:
а) гранулометрический и минеральный состав породы, её условия образования, однородность сложения, форма частиц (степень окатанности) и характер их поверхности, степень уплотнённости породы. Например, у песков, сложенных окатанными зёрнами кварца УЕО = 27 o , а в песках с неокатанными, остроугольными зёрнами кварца УЕО = 46 o ;
б) влажность; её изменение сказывается неоднозначно – повышение влажности песков до 5–15 % приводит к увеличению УЕО на 10–15 %, а при полном затоплении откоса или при влажности, равной полной влагоёмкости, УЕО уменьшается на 10–40 %. Откосы из глинистых и слюдистых песков под водой обладают УЕО менее 15 o ;
в) направление движения фильтрационного потока в грунте; при движении воды со стороны откоса (дренаж) УЕО значительно уменьшается, и, наоборот, если вода фильтруется из источника внутрь откоса, УЕО возрастает;
г) в раздельнозернистых грунтах величина УЕО не зависит от высоты откоса.
1.5. УЕО имеет важное практическое значение при оценке прочности и устойчивости рыхлых пород: откосов, котлованов, карьеров, подземных горных выработок, а также для определения плывунности и тиксотропии пород. По величине УЕО пород различного типа разработана специальная классификация, которая используется при проектировании и строительстве выемок, насыпей, дамб и других сооружений.
Искусственное увеличение УЕО имеет важное экономическое значение. Так, для Нурекской плотины (р. Вахш), имеющей объём около 60 млн м 3 , изменение УЕО галечника, слагающего упорные призмы, с 35 до 38 o вызвало уменьшение объёма плотины на 4 млн м 3 грунта. С другой стороны, введение в расчёт завышенных значений УЕО может привести к значительным деформациям сооружения или полному его разрушению.
Сопротивление грунтов сдвигу. Сопротивляемость горных пород и грунтов сдвигу. Показатели и методы их определения , страница 3
Внутренние связи различных пород
Можно сделать вывод, какие внутренние связи имеют первостепенное значение в различных породах:
1) В скальных породах, подобных граниту или известнякам, превалируют жесткие необратимые связи структурного сцепления сс. Внутренние связи водно-коллоидной природы в подобных породах не проявляются (Σ w = 0). Силы внутреннего трения от внешней нагрузки возникают в породе прак-тически лишь на контактных стенках трещин.
2) В работе сыпучих, несвязных грунтов (песок, гравий, щебень и т. д.), например, под нагрузкой от сооружений наибольшее значение приобретают силы внутреннего трения и только отчасти силы структурного сцепления.
3) Наибольшее значение в прочности глинистых пород имеет связность Σ w, хотя в определенных случаях могут проявиться и другие компоненты сопротивляемости горных пород сдвигу, т. е. силы внутреннего трения и структурного сцепления.
Угол естественного откоса сыпучих грунтов
Говоря о методах определения угла внутреннего трения φn для рыхлых сыпучих грунтов, нельзя обойти вопрос об угле естественного откоса грунта φ .
Углом естественного откоса называют угол, образуемый линией свободно стоящего откоса отсыпанного грунта с горизонтом (рис. 8).
Рис. 8. Схема к определению угла внутреннего трения φn по углу φ о естественного откоса сыпучих грунтов
Выделим на откосе с углом к горизонту φ некоторый элемент весом Р. Разложим эту силу на две составляющие: нормальную N и касательную Q:
N = Р cos φ ; Q= Р sin φ .
Под действием силы N по контактной поверхности выделенного блока и откоса развиваются силы трения:
T = N·tgφn = P·cosφ tgφn.
По мере увеличения угла наклона откоса степень устойчивости выделенного элемента на поверхности откоса будет уменьшаться. При некотором значении угла откоса φ элемент будет находиться в состоянии предельного равновесия Т=Q, т. е.
P·cosφ tgφn = Р sinφ .
Произведя необходимые сокращения и преобразования, получим
tgφn = sinφ / cosφ = tgφ , откуда φ = φn. (9)
Таким образом, для сыпучего грунта в рыхлом состоянии угол с горизонтом свободно отсыпанного откоса (угол соответственного откоса) оказывается равным углу внутреннего трения.
В естественных условиях угол φ определяют прямым замером, например при отсыпке грунта в конус; в лабораторных условиях для этой цели применяют приборы. Один из наиболее удачных приборов создал В. Г. Науменко. Угол φ грунта в сухом и затопленном состоянии измеряется по откосу, остающемуся после удаления избыточных масс грунта. Для правильного определения угла естественного откоса это условие является решающим. Преимущество этого прибора заключается в независимости результатов опыта от индивидуальных особенностей лаборанта, в частности, при проведении опыта под водой.
В заключение отметим, что равенство угла естественного откоса углу внутреннего трения грунта верно лишь для грунтов, полностью лишенных связности и сцепления. Более крутые откосы у других грунтов являются прямым следствием проявления сил сцепления и связности, и в этих условиях зависимость (9) теряет практический смысл. По этой причине нельзя определять угол внутреннего трения влажных песков и тем более глинистых грунтов по углу естественного откоса в условиях лабораторных опытов.
Для средних условии расчетный угол внутреннего трения:
1) для песков можно принимать φ =30°;
2 минимальное значение угла внутреннего трения гравийно-галечнико-вых грунтов при рыхлом их сложении и невысоких напряжениях обычно составляет φ = 40 а и несколько выше; при плотном сложении (n = 20%) он может достигать φ =50 о —55 о .
3) зернистые грунты в толще коренных пород обладают обычно некоторой связностью (уплотненные пески) за счет слабой цементации. Угол внутреннего трения у этих песков находится в пределах φ = 30—35 о . В природном состоянии такие грунты залегают плотно и надежно устойчиво.
Пошаговое построение плана земляных масс
Сегодняшний пост пополнит рубрику «Земляные массы» и затронет вопросы, которых я еще не касалась по этой теме. Я уже не раз рассказывала, как правильно заполнить ведомость земляных масс, но при этом почему-то не посчитала нужным рассказать, как выполнить сам план этих самых масс :).
Рассмотрим на конкретном примере пошаговое построение плана земляных масс. К работе над земляными массами переходят уже тогда, когда полностью отработан план организации рельефа.
Моя последовательность работ:
Шаг 1.
Копирую план организации рельефа с топосъемкой на отдельный лист, объединив их в блок. С блоком работать удобнее, так как строить картограмму мы будем поверх плана, заполненного горизонталями и существующими отметками рельефа местности. После определения «черных» и «красных» отметок мы наш блок успешно удалим, но об этом чуть позже, идем дальше.
Шаг 2.
Проектируемый участок я делю на квадраты, вычерчивая сетку 20х20 м поверх нашего «блока» — плана организации рельефа. Проектируемые и существующие здания под сетку не заносим – так, как показано на примере. Конечно, в зависимости от формы проектируемой территории, зданий и сооружений, ячейки сетки могут получится любой формы: прямоугольники, треугольники, трапеции и т.д.
Шаг 3.
Следующим шагом проставляю на всех пересечениях сетки существующие (черные) и проектируемые (красные) отметки рельефа местности. Для этого и нужен наш блок с планом организации рельефа и топосъемкой. По топосъемке я определяю существующую отметку, по плану организации рельефа – проектируемую отметку рельефа местности в местах пересечений сетки.
Проектируемая отметка ставиться над существующей отметкой на чертеже (так, как показано на картинке). Всё, дальше наш «блок» нам уже не нужен. Удаляем топосъемку с планом организации рельефа. У нас останется только сетка с отметками.
Шаг 4.
Следующая задача – подсчитать разницу между проектируемой и существующей отметкой. Тут все просто: от проектируемой (красной) отметки отнимаем существующую (черную) отметку и записываем результат слева от проектируемой отметки (смотрим на пример ниже). Результат может быть отрицательный (со знаком минус), положительный и равен нулю (в случае, если значения красной и черной отметок рельефа совпадают). Отрицательный результат означает «выемку», положительный — «насыпь».
По окончанию этой работы мы имеем набор геометрических фигур с высотами каждой ее вершины и можем переходить к следующему шагу.
Шаг 5.
После того, как мы определили высотные отметки на каждом пересечении сетки, самое время построить линию нулевых работ. Показывается она штрихпунктирной линией и располагается между выемкой и насыпью. Если все высотные отметки только положительные или только отрицательные, то линии нулевых работ на чертеже не будет (как раз мой случай). Это значит, что грунт всей проектируемой территории мы либо насыпаем, либо вынимаем.
Так как на моем плане земляных масс весь грунт насыпной (все высотные отметки со знаком «плюс» или равны нулю), я покажу как построить линию нулевых работ на примере отдельной квадратной ячейки. Предположим, что квадратная ячейка имеет длину стороны 20 м и высотные отметки +3,0; -2,0; -4,0; 0,0. Между отметкой насыпи +3,0 и выемки -2,0 пройдет линия нулевых работ. По рассматриваемой стороне ячейки перерабатывается 5 м грунта: 3 м насыпаем и 2 м срезаем. Делим длину стороны на 5 и определяем в какой точке проходит линия нулевых работ 20/5=4 м (4 м длины на 1 м высоты). Значит «ноль» расположен на расстоянии 8 м от отметки -2,0 или 12 м от отметки +3,0.
Наносим точку на стороне квадрата между отметками +3,0 и -2,0 и соединяем с отметкой 0,0. Продлеваем линию нулевых работ таким образом через все ячейки, имеющие отметки и выемки и насыпи. «Выемку» по проектируемому участку заштриховываем линиями под углом 45 градусов. Переходим к следующему шагу.
Шаг 6.
Теперь нам необходимо определить объем каждой ячейки. Тут вариантов не так уж и мало: можно вспомнить школьную математику или воспользоваться онлайн калькулятором (правда калькуляторы в основном придуманы только на подсчет котлованов с откосами или траншей). Я пользуюсь простой и удобной программкой ZEMMAS которую вы можете скачать на сайте в рубрике «Материалы для СКАЧИВАНИЯ». Правила пользования предельно просты: находите нужную вам фигуру (тип ячейки) и вводите необходимые данные для подсчета объема (например, для прямоугольной ячейки надо указать длины двух сторон в метрах (замеряем по плану) и высотные отметки вершин фигуры (это те отметки, которые мы получили путем отнимания существующей отметки от проектируемой (см. шаг 4).
Полученный объем проставляем в центр ячейки сетки на плане. Важно не упускать знаки отметок. Если высотная отметка со знаком «минус», значит и в программу мы вписываем ее со знаком минус. Объем «выемки» на плане указывается со знаком «минус», «насыпи» — со знаком «плюс».
Отдельно расскажу про подсчет объемов по откосам, образованным насыпью. Уклон откоса принимается от вида грунта. Для примера обозначим уклон откоса 1:1,5 (наиболее часто применяемый уклон для Беларуси). Предположим, что высота насыпи – 1 м, тогда в ширину откос займет 1,5 м. В сечении наш откос будет выглядеть так:
Мы получили прямоугольный треугольник и знаем значения его катетов: 1 м и 1,5 м. Имея такие исходные данные, легко вычислить площадь прямоугольного треугольника по формуле ½*1*1,5 (вспоминаем школу и нашу уверенность в том, что эти дурацкие формулы из геометрии нам никогда в жизни не понадобяться, затем громко смеемся). Площадь нашего откоса в сечении = площади прямоугольного треугольника = 2,5 кв.м.
Зная длину откоса (а мы ее всегда знаем) не сложно вычислить объем, умножив площадь его сечения на длину. Кто не понял, длину замеряем по чертежу.
Шаг 7.
Выдохните, осталось совсем чуть-чуть. Под планом земляных масс приводим маленькую табличку, куда вносим все значения объемов ячеек со знаком «плюс» — строка «насыпь» и все объемы ячеек со знаком «минус» — строка «выемка». В конце каждой строки приводим итоговую цифру – сумму полученных объемов по «насыпи» и «выемки» соответственно.
Эти итоговые значения объемов насыпи и выемки заносятся в первую строку «Ведомости объемов земляных масс» — грунт планировки территории. Как заполнять ведомость подробно описано в соответствующих постах. Смотри рубрику ;).