Raimondirus.ru

RAiMONDI
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Взаимодействие цементного клинкера с водой

Взаимодействие цементного клинкера с водой

Качество клинкера зависит от его химического и минералогического составов.

Химический состав характеризуется содержанием в клинкере различных окислов. Минералогический состав — теми веществами (минералами), которые образуются из этих окислов в процессе обжига.

B практике цементного производства пользуются также третьим показателем оценки качества клинкера: соотношением между основными окислами, ‘позволяющим регулировать и заранее рассчитывать минералогический состав клинкера, зная химический состав исходных сырьевых материалов.

Химический состав клинкера

Сырьевыми материалами для производства портландцемент- ного клинкера чаще всего служат горные породы — глина и известняк, содержащие углекислый кальций.

Глина состоит из различных веществ, образовавшихся в основном из трех окислов: БЮг— двуокиси кремния (кремнезема), АЬОз — окиси алюминия ((глинозема) и РегОз — окиси железа.

Углекислый кальций СаС03 может быть .представлен двумя окислами СаО и С02.

При обжиге клинкера глинистые вещества и углекислыи кальций разлагаются. Газообразные продукты, в частности С02 и вода, удаляются, а оставшиеся четыре твердых окисла: СаО, Si02, AI2O3 и ИегОз образуют при спекании основные минералы цементного клинкера.

Наряду с основными окислами в клинкере могут присутствовать и другие, например окись магния MgO, окислы щелочных металлов ЫагО, К2О, ангидрид серной кислоты S03 я другие, как-то: двуокись титана ТЮ2, фосфорный ангидрид Р2О5, окись марганца МП2О3. Эти окислы в той или ‘иной степени влиякгГна качество цемента.

Минералогический состав клинкера

Четыре основных окисла СаО, Si02, А1203 и Fe203 в’клинке- ре не находятся в свободном состоянии. При обжиге они взаимодействуют между собой, Образуя различные минералы, которые в основном определяют важнейшие строительные свойства портландцемента.

Их суммарное количество составляет 95—98%- Оставшаяся часть приходится на свободные окислы или другие малозначимые для портландцемента минералы. Алита и белита в клинкере содержится 70—80%.

Минералогический состав клинкера положен в основу разделения портландцементов на следующие .виды:

высокоалитовый портландцемент, содержание в котором трехкальциевого силиката превышает 60%;

а л и т о в ы й портландцемент, содержащий трехкальциевого сил и к ата SO—©О %;

бел и то вый портландцемент, содержащий двухкальцнево- го силиката более 36%.

В зависимости от содержания алюминатов цементы разделяют на низкоалюминатные (1С3А до 5 %), среди е- алюминатные

0§зА 5—9%) и высокоалюминатные (С3А более 9%).

А л ю м оф е р ,р и т н ы й портландцемент содержит четырех- кальциевого алюмоферрита (C4AF) больше 18% или СзА<2%.

В клинкере .иногда может присутствовать в повышенном количестве одновременно два минерала. Такой ..портландцемент приобретает двойное название: алито-алюминатный, белито- алюминатный и т. д.

Знание процентного содержания в клинкере важнейших минералов ‘позволяет с достаточной степенью точности предположить некоторые качества .портландцемента — скорость нарастания его прочности, влияние условий твердения на прочность, стойкость в пресных и минерализованных водах, экзотермич- ность, т. е. количество тепла, выделяемого при твердении, и др.

Исходя из знания свойств отдельных минералов и эксплуатационных условий, в которых будет находиться бетон, можно подбирать цемент соответствующего минералогического состава.

Наряду с указанными выше минералами в клинкере могут присутствовать в свободном .виде окись кальция и окись магния, существенно влияющие на качество портландцемента, если их содержание оказывается выше определенных пределов.

iB производственных условиях трудно добиться .полного связывания окиси кальция в виде основных клинкерных минералов. При высоком содержании свободной СаО в портландцементе она отрицательно влияет на его свойства, вызывая растрескивание затвердевшего цементного камня. Вредное действие свободной окиси кальция объясняется тем, что гашение СаО, т. е. взаимодействие ее с водой, сопровождается увеличением в объеме; скорость гашения при этом зависит от температуры обжига. Известь, образовавшаяся при температуре обжига до 1000— 1100°’С, гасится быстро, но с повышением температуры скорость гашения извести замедляется, а при температуре обжига клинкера (около 11500° С) она оказывается весьма медленно гасящимся веществом. Гашение ее не успевает закончиться до схватывания (начала твердения) цемента, продолжается в отвердевшем цементном камне и разрывает его.

Содержание свободной извести в портландцементе зависит от совершенства технологического процесса. Современная технология обеспечивает выпуск клинкера с минимальным количеством свободной извести (до 1%).

При высоком содержании свободной извести в клинкере его подвергают магазинированию — вылеживанию на открытом воздухе в мелях гашения извести влагой, содержащейся ,в воздухе. Иногда клинкер дополнительно обрызгивают водой.

Механизм действия свободной окиси магния в твердеющем портландцементе аналогичен действию свободной СаО. При обжиге клинкера магнезия MgO образуется в виде .вещества, весьма медленно .гасящегося (значительно медленнее CaiO), что приводит к растрескиванию затвердевших бетонов.

Для предупреждения разрушения цементного камня от действия свободной окиси магния содержание MgO в обычном клинкере ограничивается 5%.

С повышением температуры твердения цемента .гашение MgO происходит значительно быстрее. Это свойство окиси магния используют в лабораторной практике для установления степени вредного влияния ее на цемент, подвергая его .испытанию на равномерность изменения объема в автоклаве п.ри давлении пара 20 ат, температура .пара при этом превышает 250°С. Автоклавное испытание цемента на равномерность изменения в объеме при твердении производится в том случае, когда содержание MgO в клинкере более 5%.

Модули клинкера и коэффициент насыщения

Определение процентного содержания в клинкере отдельных минералов производят прямым методом — петрографическим и рентгенографическим анализами и косвенным — расчетным.

В заводской практике наиболее часто применяют расчетный метод, поэтому рассмотрим его ‘более подробно. Для определения минералогического состава клинкера расчетным методом необходимо знать процентное содержание основных клинкеро- образующих окислов. Соотношение между основными окислами выражается двумя модулями и коэффициентом насыщения. Эти величины практически остаются одинаковыми и для клинкера и для сырьевой смеси.. Поэтому, зная модули и коэффициент насыщения, можно не только определить минералогический состав готового клинкера, но и подобрать клинкер, обладающий нужными качествами. Последнее обстоятельство имеет особенно большое практическое значение, так как позволяет подбором химического состава сырья регулировать минералогический состав клинкера.

В современной .практике пользуются двумя модулями—силикатным и глиноземным.

В процессе обжига клинкера при избытке извести процесс образования C2S, С3А и C4AF протекает до начала образования трехкальциевого силиката. При более высокой температуре (свыше .1300°С) и при наличии жидкой фазы образуется трех- кальциевый .силикат за счет присоединения одной молекулы СаО двухкальциевым силикатом. Таким образом, при производстве портландцементного клинкера основная задача — это перевести двухкальциевый силикат в трехкальциевый силикат и получить в клинкере требуемое количество трехкальциевого силиката, но в клинкере при этом не должно оставаться свободной извести, т. е. количество взятой СаО должно соответствовать тому ее количеству, которое необходимо для получения C3S; С3А и C4AF. Для определения необходимого количества извести и пользуются коэффициентом насыщения.

Расчет минералогического состава клинкера

Существуют различные методы расчета сырьевой смеси клинкера; однако сущность большинства их заключается в определении того максимального количества СаО, которое может химически связаться с кислотными окислами при обжиге клинкера, образуя клинкерные минералы.

Рассмотрим один из расчетных методов, разработанный отечественными учеными и хорошо подтверждающийся практикой.

В зависимости от числа разновидностей материалов (компонентов), применяемых для составления сырьевой смеси требуемого химического состава, различают сырьевую смесь двух- . компонентную, трехкомпонентную и четырехкомпонентную.

При использовании для обжига клинкера твердого топлива расчет смеси .не зависимо от числа исходных компонентов производят с учетом или без учета присадки к клинкеру золы топлива. Присадку золы учитывают в случае использования топлива высокой зольности, например .горючих сланцев, бурых углей, а также проектируя состав клинкера с высоким коэффициентом насыщения—быстротвердеющих, высокопрочных цементов.

Читайте так же:
Как смешать цемент с золой

Рассмотрим пример расчета двухкомпонентной сырьевой смеси !(смеси с большим количеством компонентов рассчитывают аналогично). Расчет двухкомпонентной сырьевой смеси без учета присадки золы топлива производят по заданной величине коэффициента насыщения и при известном химическом составе каждого компонента ‘(известняка и глины).

Для расчета сырьевой смеси принимается упрощенная формула КН, так как не известно, какое количество CaO, БЮг и S03 останется в клинкере в свободном состоянии; БОз частично выгорает.

Следовательно, на каждую весовую часть глины потребуется взять 3,89 вес. ч. известняка. В шроцентнам выражении это составит: известняка — 79,95%, глины — 20,05%. Химический состав сырьевой смеси и клинкера при таком соотношении исходных компонентов будет следующий.

Смотрите также:

Химический состав клинкера колеблется в сравнительно широких пределах. Главные оксиды цементного клинкера — оксид кальция СаО, двуоксид кремния Si02, оксиды алюминия А1203, железа Fe203, суммарное содержание которых 95—97%.

Качество цементного клинкера может быть охарактеризовано: содержанием отдельных оксидов (химическим составом); численными значениями модулей, выражающих соотношения между количествами главнейших оксидов в процентах; микроструктурой клинкера.

Фактический состав клинкера в дополнение к методам химического анализа может быть исследован с помощью микроскопа путем измерения коэффициента преломления соединений в виде порошка.

Для получения доброкачественного портландцемента химический состав клинкера, а следовательно, и состав сырьевой смеси должны быть устойчивы. Многочисленные исследования и практический опыт показывают.

Клинкер . Качество клинкера зависит от его химического и минералогических составов.
Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцемент-ного отношения.

Вяжущие свойства портландцемента обусловлены особенностями химических соединений, входящих в состав клинкера. По химическому составу клинкер представлен следующими соединениями.

Многие свойства портландцемента, в том числе активность, скорость твердения, определяются не только химическим и минеральным составом клинкера, формой и размерами кристаллов алита, белита и др., наличием тех или иных добавок.

§ 6. Свойства цементного камня

Прочность цементного камня, приготовленного из данного портландцемента и выдержанного в определенных условиях, зависит от пористости.

Прочность и пористость Я0бщ связаны экспоненциальной зависимостью вида

В полулогарифмических координатах зависимость пористость — прочность может быть представлена в виде отрезка прямой.

Рис. 53. Зависимость прочности цементного камня при сжатии от общей пористости:

1 — по Рой; 2 — по Брунауэру; 3 — по Вербеку и Хельмуту

Из рис. 53 видно, что потенциальная прочность цементного камня весьма велика. Д. М. Рой и Г. Р. Гоуда использовали для изготовления цементного камня с В/Ц = 0,093 горячее прессование (температура 250°С, давление 350 МПа).

Таблица 17 Степень гидратации, в % от полной гидратации клинкерных минералов (по Ю. М. Бутту и С. Д. Окорокову)

На практике применяют в основном бетонные смеси с В/Ц — 0,4 — 0,8, которые поддаются уплотнению вибрированием, поэтому пористость цементного камня в реальных бетонах составляет 30 — 50%, а его прочность (рис. 53) будет 20 — 100 МПа.

Скорость взаимодействия клинкерных минералов с водой можно охарактеризовать увеличением степени их гидратации во времени (табл. 17).

Наиболее быстро гидратирующимися минералами цементного клинкера являются трехкальциевый алюминат и трехкальциевый силикат; самая медленная гидратация происходит у двухкальциевого силиката.

Рис. 54. Нарастание прочности клинкерных минералов во времени (логарифмический масштаб): 1 — C3S с 5% гипса; 2 — C2S с 5% гипса; 3 — CjA с 15% гипса; 4 — CAF с 5% гипса

На рис. 54 сопоставлены кривые нарастания прочности клинкерных минералов, затворенных водой. Трехкальциевый силикат быстро твердеет и приобретает высокую прочность. Трехкальциевый алюминат отличается очень быстрым нарастанием прочности, но в дальнейшем она почти не изменяется.

Таким образом, увеличение суммарного содержания трехкальциевого силиката и трехкальциевого алюмината в цементном клинкере необходимо для получения быстротвердеющих портландцементов.

Влияние тонкости помола цемента на прочность можно проследить по рис. 55.

Рис. 55. Зависимость прочности портландцемента от удельной поверхности: 1 — возраст образцов 1 сут; 2 — 28 сут

Увеличение удельной поверхности и прочности цемента в начальные сроки твердения (до Зсут) объясняется повышением содержания в цементе частиц размером меньше 5 мкм. Как

раз в мелкой фракции цемента скапливаются менее твердые минералы — алит (C3S) и СзА, быстро реагирующий с водой. Полная гидратация мелких зерен этих минералов происходит уже в течение первых 3 сут после затворения цемента водой (табл. 18) и дает соответствующий выигрыш в начальной прочности.

Таблица 18 Глубина гидратации клинкерных минералов, мкм (по Ю. М. Бутту и С. Д. Окорокову)

Гидратация в течение

Прочность в последующие сроки твердения (после 7 сут) обусловлена гидратацией внутренней части зерен более крупных фракций цемента.

Морозостойкость зависит от минерального состава клинкера, вещественного состава портландцемента и капиллярной пористости цементного камня. Количество трехкальциевого алюмината ограничивают 5 — 7%. Добавки осадочного происхождения (диатомит, трепел) увеличивают водопотребность бетонных смесей и понижают морозостойкость. Для повышения морозостойкости применяют добавки поверхностно-активных веществ.

В отличие от прочности морозостойкость цементного камня определяется не общей, а капиллярной пористостью. Капиллярные поры понижают морозостойкость, поэтому их объем ограничивается в зависимости от марки бетона по морозостойкости.

Воздухостойкость — способность цементного камня сохранять прочность в сухих условиях, при сильном нагреве солнечными лучами, а также в условиях попеременного увлажнения и высыхания. Цементы, содержащие активные минеральные добавки осадочного происхождения, не только менее морозостойки, но и менее воздухостойки. Объясняется это главным образом дегидратацией (выветриванием) части воды из низкоосновных гидросиликатов кальция, которые образовались при взаимодействии аморфной двуокиси

кремния с гидратом окиси кальция. Поэтому, например, пуццолановый портландцемент рекомендуется применять во влажных условиях, для подводных и подземных конструкций.

Химическая стойкость. Коррозия вызывается воздействием агрессивных газов и жидкостей на составные части затвердевшего портландцемента, главным образом на Са(ОН)2 и . К-аО-АЬОз-бНгО. Встречаются десятки веществ, могущих воздействовать на цементный камень и оказаться для него вредными. 11ссмотря на разнообразие агрессивных веществ, основные причины коррозии можно разделить на три группы (по В. М. Москвину): 1) разложение составляющих цементного камня, растворение и отмывание гидрата окиси кальция; 2) образование легкорастворимых солей в результате взаимодействия гидроокиси кальция и других составных частей цементного камня с агрессивными веществами и вымывание этих солей (кислотная, магнезиальная коррозия); !)) образование в порах новых соединений, занимающих больший объем, чем исходные продукты реакции; это вызывает появление внутренних напряжений в бетоне и его растрескивание (сульфоалюминатная коррозия).

Выщелачивание гидроокиси кальция происходит интенсивно при действии мягких вод, содержащих мало растворенных веществ. К ним относятся воды оборотного водоснабжения, конденсат, дождевые воды, воды горных рек и равнинных рек в половодье, болотная вода. Содержание гидрата окиси кальция в цементном камне через 3 мес твердения составляет 10 — 15% (считая на СаО). После его вымывания и в результате уменьшения концентрации СаО (менее 1,1 г/л) начинается разложение гидросиликатов и гидроалюминатов кальция. Выщелачивание Са(ОН)г в количестве 15 — 30% от общего содержания в цементном камне вызывает понижение его прочности на 40 — 50% и более. Выщелачивание можно заметить по появлению белых подтеков на поверхности бетона.

Читайте так же:
Как правильно разводить цемент с пгс

Для ослабления коррозии выщелачивания ограничивают содержание трехкальциевого силиката в клинкере 50%. Главным средством борьбы с выщелачиванием гидрата окиси кальция является ведение активных минеральных добавок и применение плотного бетона. Процесс выщелачивания гидрата окиси кальция замедляется, когда в поверхностном слое бетона образуется малорастворимый СаСОз вследствие карбонизации Са(ОН)г при взаимодействии С СОг воздуха. Выдерживание на воздухе бетонных блоков и свай, применяемых для сооружения оснований, а также портовых и других гидротехнических сооружений повышает их стойкость.

Углекислотам коррозия развивается при действии на цементный камень воды, содержащей свободную двуокись углерода в Виде слабой угольной кислоты. Избыточная (сверх равновесного количества) двуокись углерода разрушает карбонатную пленку бетона вследствие образования хорошо растворимого бикарбоната кальция по реакции

СаС03 + (С02)0В0б + Н20 = Са(НС03)

Кислотная коррозия происходит при действии растворов любых кислот, имеющих значения водородного показателя рН<7; исключение составляют поликремневая и кремнефтористоводородная кислоты. Свободные кислоты встречаются в сточных водах промышленных предприятий, они могут проникать в почву и разрушать бетонные фундаменты, коллекторы и другие подземные сооружения. Кислота образуется также из сернистого газа, выходящего из топок. В атмосфере промышленных предприятий, кроме SO2, могут содержаться ангидриды других кислот, а также хлор и хлористый водород. При растворении его во влаге, адсорбированной на поверхности железобетонных конструкций, образуется соляная кислота.

Кислота вступает в химическое взаимодействие с гидратом окиси кальция, при этом образуются растворимые соли (например, СаСг) и соли, увеличивающиеся в объеме (Са504-2НгО): Са(ОН)2 + 2НС1 = СаС12 + 2Н20 Са(ОН)2 + H2S04 = CaS04 ■ 2Н20

Кроме того, кислоты могут разрушать и силикаты кальция. Бетон на портландцементе защищают от непосредственного действия кислот с помощью защитных слоев из кислотостойких материалов.

Магнезиальная коррозия наступает при воздействии на гидрат окиси кальция магнезиальных солей, которые встречаются в растворенном виде в грунтовых водах и всегда содержатся в большом количестве в морской воде. Содержание солей в воде мирового океана составляет (в г/л): NaCl — 27,2; MgCl2 — -3,8; MgS04 — 1,7; CaS04 — 1,2. Разрушение цементного камня вследствие реакции обмена протекает по следующим формулам:

Са(ОН)2 + MgCl2 = СаС12 + Mg(OH)2

Са(ОН)2 + MgS04 + 2Н20 = CaS04 • 2H20 + Mg(OH)2

В результате этих химических реакций образуется растворимая соль (хлористый кальций или двуводный сульфат кальция), вымываемая из бетона. Гидрат окиси магния представляет бессвязную массу, не растворимую в воде, поэтому реакция идет до полного израсходования гидрата окиси кальция.

Коррозия под действием минеральных удобрений. Особенно вредны для бетона аммиачные удобрения — аммиачная селитра и сульфат аммония. Аммиачная селитра, состоящая в основном из нитрата аммония NH4N03, подвергается гидролизу и поэтому дает в воде кислую реакцию. Нитрат аммония действует на гидрат окиси кальция

Са(ОН)2 + 2NH4N03 + 2Н20 = Ca(N03)2 • 4Н20 + 2NH3

Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона.

Хлористый калий КС1 повышает растворимость Са(ОН)г и ускоряет коррозию.

Из числа фосфорных удобрений агрессивен суперфосфат, состоящий в основном из монокальциевого фосфата Са(Н2Р04)г и гипса, но содержащий еще и некоторое количество свободной фосфорной кислоты.

Сульфоалюминатная коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей сульфатных ионов (S042-) более 250 мг/л:

ЗСаО • А1203 • 6Н20 -Ь 3CaS04 + 25Н20 = ЗСаО • А1203 • 3CaS04 • 31Н20

Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема примерно в 2 раза. Развивающееся в порах кристаллизационное давление приводит к растрескиванию защитного слоя бетона. Вслед за этим происходит коррозия стальной арматуры, усиление растрескивания бетона и разрушение конструкции. С сульфоалюминатной коррозией всегда надо считаться при строительстве морских сооружений. Вместе с тем могут оказаться агрессивными сточные воды промышленных предприятий, а также грунтовые воды.

Если в воде содержится сульфат натрия, то вначале с ним реагирует гидрат окиси кальция

Са(ОН)2 + Na2S04 3& CaS04 -f 2NaOH

В последующем идет образование гидросульфоалюмината кальция вследствие взаимодействия получающегося сульфата кальция и гидроалюмината.

Для борьбы с сульфоалюминатной коррозией применяется специальный сульфатостойкий портландцемент.

Коррозия под влиянием органических веществ. Органические кислоты, как и неорганические, быстро разрушают цементный камень. Большой агрессивностью отличаются уксусная, молочная и винная кислоты. Жирные насыщенные и ненасыщенные кислоты (олеиновая, стеариновая, пальмитиновая и др.) разрушают цементный камень, так как при действии гидрата окиси кальция они омыляются. Поэтому вредны и масла, содержащие кислоты жирного ряда: льняное, хлопковое, а также рыбий жир. Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не представляют опасности для бетона, если они не содержат нефтяных кислот или соединений серы. Однако надо учитывать, что нефтепродукты легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенол, могут агрессивно влиять на бетон.

Щелочная коррозия может происходить в двух формах: под действием концентрированных растворов щелочей на затвердевший цементный камень и под влиянием щелочей, имеющихся в самом цементе. Если бетон насыщается раствором щелочи (едкого натрия или калия), а затем высыхает, то под влиянием углекислого газа в порах бетона образуются сода и поташ, которые, кристаллизуясь, расширяются в объеме и разрушают цементный камень. Сильнее разрушается от действия сильных щелочей цемент с высоким содержанием алюминатов кальция.

Коррозия, вызываемая щелочами цемента, происходит вследствие процессов, протекающих внутри бетона между его компонентами. В составе цементного клинкера всегда содержится разное количество щелочных соединений. В составе заполнителей для бетона, в особенности в песке, встречаются реакционно способные модификации кремнезема: опал, халцедон, вулканическое стекло. Они вступают при обычной температуре в разрушительные для бетона реакции со щелочами цемента. В результате образуются набухающие студенистые отложения белого цвета на поверхности зерен реакционноспособного заполнителя, появляется сеть трещин, поверхность бетона местами вспучивается и шелушится. Разрушение бетона может происходить через 10 — 15 лет после окончания строительства.

Взаимодействие цементного клинкера с водой

1. Минералогический состав портландцементного клинкера

^ 2. Твердение портландцемента

3. Гидратация цементов как химический процесс. Фазовый состав продукции твердения

4. Структура цементного камня
^

1. Минералогический состав портландцементного клинкера

Образующийся в результате обжига сырьевой смеси клинкер, имеет достаточно сложный минералогический состав. Основную роль в нем играют четыре минерала.

Образующийся в портландцементном клинкере трехкальциевый силикат содержит некоторое количество примесей MgO, Al2O3, Fe2O3, Cr2O3, которые влияют на его структуру и свойства. Эта разновидность называется алитом и обозначается С3S. Содержание алита в клинкере наибольшее и составляет 40-55%. При рассмотрении процессов гидратации цементов примесями, входящими в трехкальциевый силикат, как правило, пренебрегают, и все расчеты ведутся на чистую систему 3CaOSiO2. В портландцементе алит обеспечивает набор точности камня в ранние сроки твердения (от нескольких дней до 3х — месяцев).

Трехкальциевый силикат получают в лабораторных условиях из химически чистых компонентов. Кристаллы алита имеют обычно шестигранную или прямоугольную форму, которая хорошо просматривается в шлифах клинкера в отраженном свете.

^ Двухкальциевый силикат Ca2SiO4 или 2CaOSiO2-(C2S) в портландцементном клинкере присутствует в  — модификации, называемой белитом. Количество его в клинкере составляет 20 — 30%. Белит имеет меньшую гидравлическую активность, по сравнению с алитом и обеспечивает рост прочности цементного камня на поздних стадиях твердения. Белит, как и алит представляет собой твердой раствор  — двухкальциевого силиката ( 2СаOSiO2) и небольшого количества (1-3) таких примесей как Аl2O3, Fе2O3, С2О3 и др. Гидравлическая активность белита также зависит от строения кристаллов. Цементы, в которых белит представлен округлыми плотными кристаллами с зазубренными краями со средним размером 20  50 мк характеризуются повышенной прочностью. Расщепление кристаллов способствует повышению ее гидравлической активности.

Читайте так же:
Какая марка цемента лучше подходит для стяжки

Промежуточное вещество, расположенное между кристаллами алита белита включает алюмоферритную и алюминатную фазу.

^ Алюминаты кальция обычно встречаются в клинкере в виде трехкальциевого алюмината С 3Аl2O6 или 3CaOAl2O3 3А) С3А кристаллизуется в кубической системе в виде очень мелких шестиугольников и прямоугольников. Содержится в цементном клинкере в количестве до 15 %. Это наиболее химически активный минерал клинкера и именно его гидратация определяет сроки схватывания цементных растворов.

Его присутствие в больших количествах ускоряет схватывание и твердение портландцементного раствора при низких температурах. Поэтому при цементировании скважин в условиях низких температур желательно повышение его содержания, при более высоких температурах не желательно. При повышенном содержании трехкальциевого алюмината ослабляется устойчивость цементного камня в средах, содержащих сульфаты и сероводород.

Алюмоферритная фаза представляет собой твердый раствор алюмоферритов кальция разного состава, который в свою очередь зависит от состава сырьевых смесей, условий обжига и т.п. При этом возможно образование серии твердых растворов между С6А2F, С4АF, C6AF2 и С2F. В клинкере алюмоферритная фаза по своему составу близка к четырехкальциевому алюмоферриту.

^ Четырехкальциевый алюмоферрит Ca4(Al2O5) (Fe2O5) или 4CaO AI2O3 Fe2O3(C4AF) (браунмиллерит) — железосодержащий минерал обладающий достаточно высокой скоростью гидратации и обеспечивающий роет прочности системы в первые часы; твердения. В портландцементах его количество находится в пределах 10 — 20%. Скорости процессов гидратации — примерно равны.

Кроме указанных минералов в состав клинкера входит стекловидная фаза, содержащая в своем составе незакристаллизованные ферриты, алюминаты, оксид магния, щелочные соединения и др. При резком охлаждении цементного клинкера стеклофаза, покрывая поверхность минералов, предотвращает фазовые переход.

CaOсвоб обнаруживается в свежеобоженном; клинкере в виде бесцветных изотропных зерен. Ее должно быть не больше 0,5  1 %. При более высоком содержании Са0своб снижается качество цемента и может вызвать неравномерное изменение его объема при твердении вследствие перехода в Са(ОН)2.

Окись магния находится в клинкере в виде: а) минерала периклаза; б) твердого раствора в алюмоферитной фазе или в трехкальциевом силикате; в) в клинкерном стекле. Вредное влияние MgO при содержании более 5% на равномерность изменения объема цемента проявляется в том случае, когда она присутствует в виде кристаллов периклаза, медленно реагирующих с водой в уже затвердевшем цементе и дающих Mg(ОН)2 характеризующийся увеличенным, удельным объемом.

Щелочи: натрий и калий присутствуют в клинкере в виде сульфатов, а также входят в алюминатную и алюмоферритную фазу.

Для регулирования сроков схватывания цемента при помоле клинкера вводится 3-5 % двуводного гипса. Кроме этого портландцемент может содержать до 15 % кремнеземосодержаших компонентов, в качестве которых могут использоваться молотый песок, шлаки, золы от сжигания твердых топлив. Введением добавок достигается два преимущества: во-первых, цемент стоит дешевле т.к. портландцементный клинкер дороже любой добавки; во-вторых, добавками можно регулировать свойства раствора и камня. Для придания специальных качеств цементу при его помоле вводятся гидрофобизаторы, пластификаторы и др. вещества.
^

2. Твердение портландцемента

При смешении цемента с водой на начальных стадиях твердения в реакцию гидратации интенсивно вступают алюминаты и алюмоферриты кальция, благодаря более высокой константе скорости растворения по сравнению с алитом к белитом. Раствор становится пересыщенным по отношению к конечному продукту и из него на поверхности зерен клинкера и в объеме раствора образуются иглообразные кристаллы гидроалюминатов и гидроферритов кальция различного состава. В общем, виде их состав можно обозначить xCaOyAI2O3mН2О и xСаОyFe2O3mН2O. Значения коэффициентов x, y, m изменяются в различных соотношениях и зависят, главным образом, от термодинамических условий процессов гидратации.

Через некоторое время (3-6 часов) в системе накапливается достаточно много кристаллогидратов и образуются "стесненные" условия, приводящие к образованию коагуляционной структуры, которая по мере накапления гидроалюминатов переходит в кристаллизационную. Через 6 — 10 часов весь объем между постепенно уменьшающимися зернами цемента заполняется скелетом иглообразных кристаллов — продуктов гидратации алюминатных составляющих клинкера. Эта структура иногда называется алюминатной Цементный раствор, бывший до этого пластичным, начинает терять подвижность и набирать прочность.

В оставшемся объеме одновременно с алюминатной, но со значительно меньшей скорость, возникают продукты гидратации силикатных клинкерных минералов алита и белита.

Последние образуют чрезвычайно тонкопористый ворс из очень малых кристаллов, так называемую силикатную структуру. Влияние этой структуры на прочность твердеющего цементного камня со временем все более увеличивается. Она уже является собственно носителем прочности цементного камня и приблизительно через 1 сутки начинает преобладать над алюминатной. К месячному сроку в цементном камне обнаруживается практически только силикатная структура. К этому времени процесс гидратации не заканчивается и в ряде случаев может продолжаться годами за счет неиспользованного клинкерного фонда цемента.

Процесс формирования цементного камня является сложным и многообразным. Чтобы получить более полное представление о взаимодействии портландцемента с водой целесообразно рассмотреть реакции взаимодействия отдельных клинкерных компонентов.

Технология производства цемента безобжиговым способом

Технология основана на совместном помоле металлургических шлаков с добавками возбудителями и активизаторами твердения. В качестве активизаторов в данной технологии используются: Ca2SO4 (гипс строительный), Na2CO3 (сода кальцинированная), NaOH (сода каустическая), Na2O×nSiO2 (жидкое стекло).

Получаемые продукты: сульфатно-шлаковые цементы, шлакощелочные цементы М300 — М600.

Сырьевыми материалами для производства портландцементного клинкера чаще всего служат горные породы: глина и известняк.

Глина состоит из различных веществ, содержащих в основном три окисла: SiO2 — двуокись кремния (кремнезем), Al2O3 — окись алюминия (глинозем) и Fe2O3 — окись железа. Известняк состоит в основном из углекислого кальция CaCO3, который может быть представлен в виде двух окислов: СаО — окиси кальция и СО2 — двуокиси углерода (углекислого газа).

При обжиге клинкера глинистые вещества и углекислый кальций разлагаются. Газообразные продукты, в частности СО2, удаляются, а оставшиеся четыре окисла СаО, SiO2, Al2O3, Fe2O3 — образуют при спекании основные минералы цементного клинкера.

Процентное содержание основных окислов в клинкере обыкновенного портландцемента находится в следующих пределах:

Наряду с основными окислами в клинкере могут быть и некоторые другие, например окись магния MgO, окислы щелочных металлов K2O и Na2O, ангидрид серной кислоты SO3, двуокись титана TiO2, фосфорный ангидрид P2O5, окись марганца Mn2O3. Эти окислы в той или иной степени влияют на качество цемента.

Данная стадия производств цемента в предлагаемой технологии обойдена путём замены клинкера шлаком доменным гранулированным (ГОСТ 3476-74). Шлак является отходом производства при выплавке чугуна и представляет собой пористые кристаллические или стекловидные гранулы плотностью 2,8-3,0 г/см³ твёрдостью 5-6 единиц по шкале МООСа следующего химического состава:

Из приведённого следует, что химический состав доменного шлака весьма близок по составу к обожённому клинкеру.

Способность молотого шлака к твердению при затворении водой известна давно, но в связи с пониженным содержанием в шлаке СаО активность молотого шлака низка. Прямое введение в шлак оксида кальция (извести) недопустимо, т.к. вышеуказанные оксиды кальция, кремния, алюминия и железа находятся в шлаке в виде минералов сложного состава (трёх- и двухкальциевых силикатов, трёхкальциевых алюминатов и четырёхкальциевых алюмоферритов) и введение извести приведёт к нарушению минералогического баланса, что в свою очередь, крайне отрицательно скажется на свойствах цемента: скорости нарастания прочности, стойкости в водах, экзотермичности. Данная проблема устраняется введением в доменный шлак технического гипса (сульфата кальция), который при затворении смеси шлак и гипса водой вступает в химическое взаимодействие с продуктами гидратации шлаковых минералов, что в свою очередь приводит к получению полноценного цементного камня.

Читайте так же:
Как правильно наносить цементную смесь

Кроме того, в смесь шлака и гипса вводится незначительное количество готового портландцемента для активации химического взаимодействия. В результате смешивания и совместного помола трёх ингредиентов (шлака, гипса и портландцемента) образуется цементное вяжущее — сульфатно-шлаковый цемент марки М400 (по пределу прочности при сжатии в 28-ми дневном возрасте полностью соответствующий техническим условиям, введённым в действие с 01.01.96г., постановлением Минстроя России от 03.05.95г. №18-40). Сульфатно-шлаковый цемент применим для всех видов строительных работ, приготовления растворов и бетонов, изготовления искусственных каменных материалов, а также, в связи с высокой стойкостью против действия сульфатных вод, в морских и речных гидросооружениях и для подземных конструкций, находящихся в условиях повышенной влажности.

Специалистами НО «Спецтехнологии» произведён подбор оптимального состава сырьевой смеси на 1 тонну цемента:

Рецептура №1:
Шлак доменный — 800 кг;
Гипс технический — 150 кг;
Портландцемент М400 — 50 кг.

Рецептура №2:
Шлак доменный — 700 кг;
Гипс технический — 250 кг;
Портландцемент М400 — 50 кг.

Настоятельно рекомендуем соблюдать вышеуказанный состав сырьевых смесей. Рецептура №2 позволяет получать цементы марки М600, но является экономически менее выгодной рецептуры №1.

Кроме сульфатно-шлаковых цементов специалистами НО «Спецтехнологии» рекомендуются к изготовлению шлакощелочные цементы, позволяющие в зависимости от химического состава шлаков получать цементы марочностью М400 — М1200.

Обязательное требование к шлакам — наличие стекловидной фазы, способной реагировать со щелочами. В качестве щелочного компонента рекомендуются к применению кальцинированная или каустическая сода, поташ, растворимый силикат натрия, а так же щёлочесодержащие отходы (содощелочной плав, содопоташная смесь, цементная пыль и т.п.). Оптимальное содержание щелочных соединений в готовом цементе составляет 2-5% от массы шлака в пересчёте на Na2O. Для шлаков с модулем основности (Мо) больше 1 применимы все щелочные соединения и их смеси, для шлаков с Мо<1 только едкие щёлочи и щелочные силикаты (жидкое стекло).

Рецептура №3:
Шлак доменный — 900 кг;
Сода кальцинированная — 50 кг (в виде водного раствора) или 80 кг (в сухом виде);
Портландцемент М400 — 50 кг.

В связи с высокой скоростью набора прочности цементным камнем для предотвращения усадочных деформаций рекомендуется ввод в сырьевую смесь суперпластификаторов (С3, Relamix и т.д.) в количестве не более 0,3%.

Высокопрочные смеси (до М1200) образуются при замене в рецептуре №3 кальцинированной соды жидким стеклом (Na2O×nSiO2) из расчёта 1 часть жидкого стекла на 2 части шлака.

Смешивание компонентов производится в обычной бытовой бетономешалке в течении 10 минут при частоте оборотов барабана мешалки 50-60 в минуту. Шлак должен иметь влажность не более 0,7%. В случае более высокой влажности шлака необходима его подсушка любым доступным способом (на открытой площадке под солнцем, нагревом и т.д.).

Следующим наиболее важным этапом производств цемента является помол полученной сырьевой смеси. Процесс тонкого помола в традиционных измельчающих механизмах (шаровых, гравитационных, струйных мельницах) является весьма энергоёмким (до 800 кВт электроэнергии на 1 т. размалываемого продукта), сопряжён с безвозвратной потерей металла из-за износа рабочих элементов измельчителей, отличается чрезвычайно низкой эффективностью (КПД не более 7%). Тонкость помола в данных измельчителях составляет 0,06 — 0,08мм.

Сульфатно-шлаковый цемент с такой тонкостью помола будет иметь марочность не более М200. Для достижения тонкости помола 0,02-0,04 мм в предлагаемой технологии используется принципиально новый метод измельчения — высокоскоростное ударное нагружение материала.

Москалев Александр

Смесители сухих смесей, оборудование для производства ССС,
Станции растаривания, Пневмокамерные и пневмошлюзовые насосы, Телескопические загрузчики, Весовые бункера-дозаторы
Тел.: +7 909 261-13-29
info@stroymehanika.ru
Skype: A.Moskalev_SM

Лабазин Илья

Вопросы дилерского сотрудничества, Фасовочные станции, Станции затаривания, Дозаторы малых добавок
Тел.: +7 962 272-62-77
info@stroymehanika.ru
Skype: stroymehanika71

Лозовский Михаил

Ленточные конвейеры и элеваторы, Винтовые конвейеры АРМАТА, Силосы цемента, Дробильно-сортировочное и помольное оборудование, Виброгрохоты и вибросита
Тел.: +7 960 616-30-22
info@stroymehanika.ru

   Портал о цементе и бетоне.

    Обжиг цемента. Клинкер
Процессы происходящие при обжиге смеси
Обжиг тонкоизмельченной и хорошо гомогенизированной сырье­вой смеси заданного состава в специальных обжиговых агрегатах является важнейшей составной частью производства цемента. В результате обжига сырьевой смеси получается цементный клинкер, содержащий в основном известь и кремнезем, а также глинозем и окись железа, находящиеся в виде силикатов, алюминатов tf-алюмоферритов кальция.

Свойства портландцемента как вяжущего материала обусловли­ваются» свойствами составляющих его минералов, основными из ко­торых являются трехкальциевый силикат (C3S), двухкальциевый силикат (C2S), алюмоферриты кальция переменного состава (qt i C8A3F до C2F), алюминаты кальция (СзА и С5А3). Кроме того, в клинкере могут находиться и другие минералы, присутствие которых будет обусловливаться наличием тех или иных примесей в сырье.
Образованию конечного продукта-портландцементного клинкера предшествует ряд физико-химических и теплотехнических процессов, которые протекают в определенных температурных границах — технологических зонах печного агрегата. При мокром способе производства шлам с влажностью от 28 до 50% поступает в так называемую зону испарения влаги. Часть зоны испарения влаги шлама обычно оснащается цепными завесами с целью интенсификации процесса сушки. В процессе нагревания и испарения влаги происходит загустева* ние шлама, и при некоторой вязкости шлама в цепных завесах обра­зуются гранулы, которые выходят с влажностью 6—12% и темпера­турой порядка 90—-100° С. Расход тепла на испарение влаги шлама в зависимости от спо­соба производства, т. е. от влажности сырьевой смеси или гранул, поступающих в печь, колеблется от 20 до 650 ккал/кг клинкера и составляет при мокром способе производства более одной трети от об­щих затрат тепла на обжиг. Газовый поток поступает в зону испарения влаги с температурой 800—1000° С и покивает печь с температурой 150° С или несколько выше.

Потери тепла с отходящими газами на лучших современных печах не превышают 150 ккал/кг клинкера. В следующей зоне печи — подогрева и дегидратации — материал нагревается от 90—100 до 600° С. При температуре 450° С и выше на­чинаются дегидратация и процесс разложения каолинового ядра глинистого компонента на SiOa и AI2O3, a также декарбонизация углекислого магния.
На этом участке печи обычно устанавливаются металлические или керамические теплообменники, кото­рые улучшают процесс передачи тепла и снижают температурный перепад между газами и материалом. Участок печи, где происходит разложение карбонатной составляющей,—так называемая зона декар­бонизации, является с теплотехнической точки зрения главной зоной печи с максимальным потреблением тепла. Процесс разложения карбоната кальция начинается при температуре около 600° С и ускоряется по мере повышения температуры материала, достигая максимума при 900 С.

Читайте так же:
Как начиналось производство цемента

В интервале температур 800—1000° С из глинозема глинистого компонента и свободной извести образуется моноалюминат кальция^ (СА), который при более высокой температуре реагирует с окисыо§ кальция и образует вначале С5А3, а’затем и С3А. Взаимодействие окиси железа с окисью кальция начинается Щ температуре 800-—900° С с образованием CjF, который при-более высокой температуре вступает во взаимодействие с алюминатами кальция.
Для более полного прохождения твердофазовых реакций, протекающих, как известно, в местах контактов зерен взаимодействующих компонентов, имеют весьма существенное значение такие факторы, как тонкость помола и однородность сырьевой смеси.
.При плохой гомогенизации и крупном помоле смеси образовав­шиеся в результате разложения СаСОз зародышевые кристаллы извести могут остаться в свободном виде и вследствие рекристаллнза*-ции не могут быстро взаимодействовать с другими окислами.
Расход тепла на разложение известнякового компонента и водогрее сырьевой смеси от 900 до 1250—1300° С составляет 550—650 ккал/кг клинкера. Все процессы так называемого «белитового периода» обжига клинкера можно значительно ускорить путем увеличения температурного напора на 150—200° С. В зоне экзотермических реакций за счет выделения тепла (примерно 100 ккал/кг клинкера) при реакциях образования двухкальциевого силиката, алюминатов и алюмоферритов кальция температур ра материала резко повышается от 1100 до 1300° С и выше. Вместе с тем в этой зоне часть материалов начинает расплавляться и вслед- ? ствие имеющих место диффузионных процессов происходит насыщение ранее образовавшихся зерен P-C2S до трехкальциевого силиката. Образование алита .заканчивается в интервале температур 1300— 1450° С. По данным последних исследовании советских и зарубежных ученых можно представить себе механизм образования алита в результате растворения окиси кальция и двухкальциевого силиката в жидкой фазе с последующей кристаллизацией алита или в результате диффузии молекул окиси кальция в расплаве к кристаллам двухкальциевого силиката, т. е. взаимодействием в твердой фазе. Время полного усвоения окиси кальция и образования алита в зоне спекания исчисляется в действующих, печах от 10 до 25 мин.
Этот участок печи и располагающаяся здесь же зона горения топлива являются самой ответственной частью печи, так как от правильной организации процесса сжигания топлива и дальнейшего использования тепла продуктов сгорания зависят расход тепла на обжиг и качество клинкера’.
В зайисимости от времени пребывания клинкера при высоких температурах, а также скорости охлаждения клинкера кристаллы его могут имеет различные размеры.
Кристаллическая структура клинкера оказывает существенное влияние на прочностные Показатели. Установлена; что мелкокристаллическая структураypa клинкера позволяет яри прочих равных условия!: получать цементы более высоких прочностей. ; Процесс охлаждения клинкера в самой печи и в холодильниках щахт большое значение как с теплотехнической, так и с технологи­ческой точки зрения. Обычно в зоне охлаждения, расположенной в самой печи, температура клинкера снижается до 1100—1350° С, а в холодильниках в зависимости от нх конструкции — до 50—300е С. Вторичный воздух, охлаждающий клинкер, нагревается до 600— 800° С ним возвращается в печь 200—270 ккал/кг клинкера. Следовательно, эффективное охлаждение клинкера приводит к значительной экономии тепла и повышению температуры горения топлива.
Быстрое охлаждение клинкера препятствует разложению алита, находящегося в метастабильном состоянии в интервале температур 1200—1250° С, способствует фиксации жидкой фазы в стекловидном состояния и мелкой кристаллизации клинкерных минералов, мешает выделению примесей из минералов и росту самих кристаллов.

Последовательно пройдя все стадий тепловой обработки, полученный полу­фабрикат (клинкер) выгружается из печи в холодильное устройство и далее транспортером подается в клинкерный склад. Вращающиеся печи состоят из сле­дующих основных элементов: корпуса с бандажами и венцовой шестерней, привода, роликоопор, теплообменников, холодной и горячей головок с уплотнительными устройствами Корпуса вращающихся печей изготовляли клепаными, а теперь они полностью сварной конструкции.Это дает экономию металла и обеспечивает герметичность швов. В месте установки бандажей участок обечайки изготовляется из более толстого сталь­ного листа. Для печей с диаметром кор­пуса до 4 м бандажи изготавливают цельнолитыми, а для печей больших диаметров — сварными из двух поло­вин. Примерно на середине печи уста­навливается венцовая шестерня, приво­димая во вращение электродвигателем через редуктор. Кроме основного рабо­чего двигателя привода имеется вспо­могательный, который обеспечивает вра­щение печи в случае внезапного выхода из строя основного привода. Бандажи опираются на роликовые опоры, смонтированные на металлической раме, которая установлена на массив­ном железобетонном фундаменте.

В местах соединения корпуса вра­щающейся печй с пыльной камерой и горячей головкой создается уплотнение с целью устранения подсосов холодного наружного воздуха.
В цементной промышленности для обжига клинкера применяются печи различной производительности и конст­рукций. Описание конструкций и основ­ные показатели работы вращающихся печей производительностью до 25 т/ч довольно подробно освещены в технической литературе. В справочнике дается краткое описание печей’ большой мощ-ности, которые в настоящее .время внедряются лв промышленность в качестве основных, агрегатов для обжига» Вращающаяся печь размером 4X150 м. Производительность этой печи составляет 35 т клинкера в час. «Корпус печи сварен из стальных листов толщиной 30 и 32 мм. На корпусе печи установ­лены семь бандажей , которые опираются на роликоопоры. В местах установки бандажей подбандажная обечайка имеет толщину листа 50 мм. На третьей опоре 4 устанавливается упорная стойка с упор­ными роликами из стального литья, которые ограничивают продоль­ное движение вращающейся печи. Привод печи осуществляется от разъемного зубчатого венца 5, который крепится к. корпусу печи с помощью пружинящих прокладок. Толщина листа подвенцоврй обе­чайки составляет 50 мм. Подвенцовая шестерня надевается непосредственно на выходной вал редуктора.
Для увеличения жесткости корпуса печи предусматривается уста­новка колеи жесткости . Сирьевая смесь (жидкотекучий шлам) поступает в загрузочный конец печи , У холодного конца печи расположен цепной фильтр , а далее — гирляндная цепная завеса и металлические Теплообмен­ники . Уловленная в электрофильтрах пыль возвращается в пеяь через специальное устройство на корпусе печи. Горячий клинкер поступает через горячую головку печи в холодильник.

Подшипники опор и ролики снабжены системой водяного охлаждения. Смазка подшипников опор печи — жидкая черпаковая, из мас­ляных ванн подшипников. Смена масла — периодическая централи­зованная. Смазка подшипников упорных роликов, главного редукто­ра, подшипников подвенщэвой шестерни — жидкая циркуляционная, а смазка редуктора вспомогательного привода и венцовой пары —жидкая заливная.

Стальной барабан, состоящий из отдельных обечаек, сваренных из листом в продольном и поперечном направлениях. На корпусе печи закрепляются бандажи опирающиеся на роликоопоры Между четвертой и третьей опорами на корпусе печи крепится шестерни
Клинкер через горячую головку печи В поступает н колосниковый холодильник И Пони спекания печи орпширтся надой с помощью устройств, й комплект печного агрегата входит: колосниковый холодильник ячейковый транспортер для трйпепоргиронаппн клинкера шириной 1000 мм и производительностью 200 т/ч;
весы с вращающимся барабаном для взвешивания клинкера произво­дительностью 120 т/ч; вентилятор высокого давления тнпя ВМ-75/1200-16 производитель­ностью 4000 м*/ч и напором до 1300 мм под. ст. Этот вентилятор применяется дли сжигйнни твердого топлинн, двойной шлимоный Питатель с регулируемой скоростью вращения черпакового колеся. Производительность с емкостью контрольного бачка 500 л;
дымосос типа Д-14 производительностью 270 000 мг/ч и напором 200 мм вод. ст. с электродвигателем мощностью 350 кет. На каждую печь устанавливаются по два дымососа.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector