Raimondirus.ru

RAiMONDI
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловыделение при твердении бетона

Тепловыделение при твердении бетона

Набор прочности в результате протекания процесса гидратации неизбежно связан с выделением в окружающую среду тепла. В различных составах этот процесс протекает по-разному. Меньше всего влияния на бетон производит медленное затворение смеси, при котором тепловая энергия выделяется незначительно в течении продолжительного периода времени. Гораздо сложнее ситуация обстоит с быстротвердеющими составами, выделяющими большое количество тепла за короткий промежуток времени.

На протекание процесса в целом влияет скорость гидратации цементного вяжущего. Чем быстрее происходит связывание цемента с водой, тем большее количество тепловой энергии отводится в окружающую среду. Вяжущие, содержащие в своем составе трехкальциевые силикаты, имеют большее тепловыделение, чем двухкальциевые. Но во втором случае прочностные характеристики значительно ниже. Именно поэтому данная проблема актуальна для всех конструкций из высокопрочных бетонов.

Выделяют следующие факторы способные повлиять на количество выделяемого бетоном тепла:

  • Степень обжига и тонкость помола цемента.
  • Количество воды затворения.
  • Присутствие в составе химических добавок.
  • Условия окружающей среды.
  • Количество цемента и его теплоемкость.

Следует отметить, что любые способы ускорить процесс твердения увеличивают тепловыделение. Снижение скорости схватывания напротив приводит к уменьшению количества выделенного тепла.

Устройство массивных конструкций

Тонкостенные бетонные конструкции имеют достаточно большую поверхность испарения, поэтому выделяемая энергия не ощутима. Она рассеивается в теле бетона и отводится с поверхности. Совсем иначе ситуация обстоит в массивных бетонных элементах. Наружная часть прекрасно отдает тепло и охлаждается, при этом внутренний массив не имеет возможности должным образом взаимодействовать с атмосферой и сильно перегревается.

Температура внутренней части значительно превосходит температуру на поверхности. Это служит причиной возникновения напряжений в цементном камне. Если не принять мер, это неизбежно приведет к образованию трещин. Контраст еще больше увеличивается при попытках охлаждения бетона снаружи. Разность температур возрастает, что приводит к большим деформациям.

Методы противодействия тепловыделению

Основной задачей в борьбе с излишком тепловой энергии в толще бетона является выравнивание поверхностных и внутренних температур. Нужно убрать охлаждение с поверхности бетона. Это актуально для возведения гидротехнических сооружений, в которых даже на этапе заливки опалубка может омываться жидкостью. Из бетонного массива напротив, обеспечивается дополнительный теплоотвод. Это осуществляется прокладкой в сердечнике труб по которым постоянно циркулирует охлажденная вода.

Для получения одной и той же марки бетонной смеси может потребоваться разное количество цемента. Высокомарочное вяжущее позволяет снизить расход, в то время как пуццолановые и шлакопортландцементы нужно применять в большем объеме. Учитывая то, что увеличение количества цемента приводит к линейному повышению тепловыделения, для массивных конструкций следует применять только вяжущие высокой марки.

Уменьшение количества воды и соответственно водоцементного отношения также положительно сказывается на равномерном твердении бетонной конструкции. Это приводит к использованию жестких смесей для бетонирования. При необходимости использования подвижного состава применяют белитовое вяжущее. Оно в меньшей степени подвержено влиянию количества жидкости на отдачу тепла.

ГОСТ 26798.1-85 Цементы тампонажные. Методы определения растекаемости, плотности, водоотделения, времени загустевания и сроков схватывания

Настоящий стандарт распространяется на все виды тампонажных цементов и устанавливает методы испытаний для определения растекаемости, плотности, водоотделения, времени загустевания и сроков схватывания цементного теста.

1. ОПРЕДЕЛЕНИЕ РАСТЕКАЕМОСТИ

Чаша, лопатка по ГОСТ 310.3—76.

Мешалка для перемешивания цементного теста по СТ СЭВ 3920-82 (п. 4.1). Допускается применение мешалки по черт. 1 со скоростью вращения лопастного устройства (1500±100) мин -1 , объемом перемешиваемого раствора в стакане цилиндрической формы от 500 до 900 см 3 .

Допускается применение мешалок иной конструкции, обеспечивающих получение однородного цементного теста при времени перемешивания (180±5) с.

Форма-конус (черт. 2).

Измерительный столик, установленный горизонтально по уровню, снабженный шкалой, представляющей собой концентрические окружности с минимальным диаметром 70 мм и максимальным не менее 250 мм. Цена деления шкалы должна быть не более 5 мм. Столик должен быть покрыт стеклом.

Читайте так же:
Как получить цемент формула

Линейка с погрешностью ±1 мм по ГОСТ 427—75.

Испытательное оборудование и средства измерений должны подвергаться поверке в соответствии с обязательным приложением.

1.2. Проведение испытаний

1.2.1. Форму-конус устанавливают на стекле в центре измерительного столика таким образом, чтобы внутренняя окружность формы совпадала с начальной окружностью шкалы столика. Внутреннюю поверхность конуса и стекло перед испытанием протирают влажной тканью.

1.2.2. Цементное тесто готовят по ГОСТ 26798.0—85.

1.2.3. Готовым цементным тестом заполняют форму-конус до верхнего торца. Интервал времени от момента окончания перемешивания до момента начала заполнения конуса не должен быть более 5 с. Затем конус резко поднимают в вертикальном направлении.

Мешалка для перемешивания цементного теста

1 ¾ лопастное устройство; 2 ¾ стакан

1.2.4. Диаметр расплыва цементного теста измеряют во взаимно перпендикулярных направлениях металлической линейкой. За значение растекаемости принимают среднее из результатов двух измерений. При этом расхождение между большим и меньшим диаметром не должно быть более 10 мм.

2. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ

Лабораторные весы общего назначения по ГОСТ 24104—80 или другие весы с пределом взвешивания не ниже 500 г и погрешностью взвешивания не более 1,0 г.

Пикнометр вместимостью (100±0,5) см 3 (черт. 3).

Чаша и лопатка по ГОСТ 310.3—76.

Мешалка для перемешивания цементного теста по п. 1.1.

2.2. Проведение испытаний

2.2.1. Определяют массу чистого сухого пикнометра с погрешностью до 1,0 г.

2.2.2. Цементное тесто готовят по ГОСТ 26798.0—85.

2.2.3. По окончании перемешивания пикнометр заполняют цементным тестом и закрывают крышкой, при этом цементное тесто должно заполнить канал в крышке пикнометра. Избыток теста, выступивший из отверстия в крышке, удаляют влажной тканью.

2.2.4. Массу пикнометра, заполненного цементным тестом, определяют с погрешностью до 1,0 г.

1 — пробка; 2 — стакан

2.2.5. Плотность цементного теста rц вычисляют с округлением до 10 кг/м 3 по формуле

где т1 — масса пустого пикнометра, г;

т2 — масса пикнометра с цементным тестом, г;

V — вместимость пикнометра, см.

3. ОПРЕДЕЛЕНИЕ ВОДООТДЕЛЕНИЯ

Чаша, лопатка по ГОСТ 310.3— 76.

Мешалка для перемешивания цементного теста по п. 1.1.

2 мерных цилиндра по ГОСТ 1770—74, исполнение 2 или 3, вместимостью 250 мл. с ценой деления не более 2 см 3 .

3.2. Проведение испытаний

3.2.1. Цементное тесто готовят по ГОСТ 26798.0—85.

3.2.2. Цементное тесто заливают в два цилиндра так, чтобы в каждом из них метка 250 см находилась на уровне верхнего края мениска.

3.2.3. Цилиндры оставляют в покое при температуре (20±3) °С . Через 2 ч измеряют объем отделившейся сверху воды. Разница в отстоях в обоих цилиндрах не должна быть более 0,5 см 3 .

3.2.4. Водоотделение ( W) в процентах от объема цемента вычисляют с точностью до 0,1 % по формуле

где v1 и v2 объем отделившейся воды соответственно в первом и втором цилиндрах, см 3 .

4. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ЗАГУСТЕВАНИЯ

Мешалка для перемешивания цементного теста по п. 1.1.

Чаша, лопатка по ГОСТ 310.3—76.

Консистометр КЦ-5 для испытания цементов при низких, нормальных и умеренных температурах.

Консистометр КЦ-3 для испытаний цементов при повышенных и высоких температурах. Допускается применение консистометра КЦ-3 для испытаний цементов при низких, нормальных и умеренных температурах.

Консистометры должны быть прокалиброваны в соответствии с инструкцией к прибору. Схема измерительного узла консистометра приведена на черт. 4.

Допускается применение консистометров иной марки, обеспечивающих получение результатов испытаний, сопоставимых с результатами, полученными на консистометрах КЦ-3 и КЦ-5.

4.2. Проведение испытаний

4.2.1. Цементное тесто готовят по ГОСТ 26798.0—85.

4.2.2. Испытание проводят в соответствии с инструкцией к прибору. Температурный режим и давление — по ГОСТ 26798.0—85.

4.2.3. Частота вращения стакана консистометров КЦ-3 и КЦ-5 должна быть (150±5) мин -1 . Допускается проводить испытания при частоте вращения стакана этих консистометров (60±2) мин -1 .

Читайте так же:
Как сделать цементный раствор для фундамента своими руками

4.2.4. Временем загустевания цементного теста считают время от начала затворения до момента достижения консистенции 30 единиц консистенции (ед. к) по шкале прибора.

Схема измерительного узла консистометра

1 — лопастное устройство; 2 — стакан

5. ОПРЕДЕЛЕНИЕ СРОКОВ СХВАТЫВАНИЯ

Мешалка для перемешивания цементного теста по п. 1.1.

Чаша и лопатка по ГОСТ 310.3—76.

Прибор Вика с иглой по ГОСТ 310.3—76.

Кольцо к прибору Вика по ГОСТ 310.3—76.

Подставка к прибору (черт. 5).

Термостат, обеспечивающий соблюдение режима по ГОСТ 26798.0—85. Воду в термостате меняют через каждые 7 сут.

Автоклав, обеспечивающий соблюдение режимов по ГОСТ 26798.0—85, с устройством для определения сроков схватывания. Устройство должно быть снабжено набором стержней с иглами или механизмом для сбрасывания иглы и поворота кольца после каждого измерения. Масса стержня с иглой должна быть (340 ± 2) г. Форма, размеры и состояние иглы должны соответствовать ГОСТ 310.3—76.

Подставка к прибору Вика

* i — толщина стенки кольца Вика

5.2. Определение сроков схватывания цементов для низких и нормальных температур

5.2.1. Перед началом испытаний проверяют свободно ли опускается стержень прибора Вика, а также нулевое показание прибора. Проверяют чистоту поверхности и отсутствие искривлений иглы.

5.2.2. Кольцо прибора Вика и подставку к нему предварительно смазывают смазочным маслом любой марки (индустриальным или консервационным) или пластичной смазкой любой марки и устанавливают кольцо на подставку.

5.2.3. Цементное тесто готовят по ГОСТ 26798.0—85.

5.2.4. После окончания перемешивания кольцо прибора Вика в один прием заполняют цементным тестом.

5.2.5. Иглу прибора доводят до соприкосновения с поверхностью цементного теста. В этом положении закрепляют стержень стопором, затем освобождают стержень, давая игле свободно погружаться в цементное тесто.

5.2.6. Первое погружение иглы в цементное тесто производят не позднее чем через 1 ч 30 мин после затворения, последующие — через 1 ч 45 мин, 2 ч и 2 ч 15 мин, а в дальнейшем — не реже чем через каждый час.

5.3. Определение сроков схватывания цементов для умеренных температур

5.3.1. Подготовку к испытаниям проводят по пп. 5.2.1—5.2.4.

5.3.2. Кольцо Вика накрывают металлической или стеклянной пластинкой и помещают в термостат таким образом, чтобы уровень воды над кольцом был не менее 2 см. Через 1 ч 30 мин кольцо с цементным тестом вынимают из термостата и проводят испытания по п. 5.2.5. Повторные испытания проводят до фиксации начала схватывания через каждые 15 мин, а в дальнейшем не реже чем через каждые 30 мин. После каждого испытания кольцо снова помещают в термостат.

5.4. Определение сроков схватывания цементов для повышенных температур

5.4.1. Цементное тесто готовят по ГОСТ 26798.0—85.

5.4.2. Кольцо устройства для определения сроков схватывания смазывают тонким слоем пластичной смазки любой марки.

Цементное тесто заливают в кольцо устройства для определения сроков схватывания. Закрепляют кольцо в устройстве и помещают его в автоклав, который полностью заполняют рабочей жидкостью согласно инструкции к нему и герметизируют.

5.4.3. Погружать иглы следует в соответствии с программой испытаний. Результаты погружений определяют согласно инструкции по эксплуатации, прилагаемой к устройству для определения сроков схватывания. Интервал времени между последующими погружениями иглы не должен превышать 1 ч.

5.5. Началом схватывания цементного теста считают время, прошедшее от начала затворения до момента, когда игла не доходит до подставки на 1—2 мм. Концом схватывания цементного теста считают время от начала затворения до момента, когда игла погружается в тесто на глубину от 1 до 3 мм.

Обязательное

ПОВЕРКА ИСПЫТАТЕЛЬНОГО ОБОРУДОВАНИЯ И СРЕДСТВ ИЗМЕРЕНИЙ

1. Поверке подлежат форма-конус, пикнометр, консистометр, автоклав, прибор Вика, устройство для определения сроков схватывания в автоклаве.

2. Поверку производят в соответствии с утвержденными методиками с периодичностью не реже одного раза и год.

Читайте так же:
Мелкозернистые бетоны песок цемент

Кальций хлористый

Хлорид кальция – это кальциевая соль соляной кислоты. Химическая формула CaCl2. Является побочным продуктом при производстве соды. Находит применение в различных областях, в том числе медицине, пищевой промышленности, химии, добыче нефти, металлургии и прочее. Очень активно применяется в строительстве и коммунальном хозяйстве ( как антигололедный реагент).

В строительстве хлорид кальция в массовом порядке используется как добавка в бетоны. Это один из самых мощных ускорителей схватывания и твердения бетона, что, в том числе, позволяет эффективно использовать хлорид кальция при зимнем бетонировании как противоморозную добавку.

Имеет целый ряд положительных свойств, что в комплексе и предопределяет массовость использования хлорида кальция в нашей стране и за рубежом.

Хлористый кальций как ускоритель схватывания и твердения цемента используется строителями и производителями стройматериалов круглый год.

Среди производителей штучных бетонных изделий, блоков из ячеистых и легких бетонов популярен тем, что ускоряется процесс оборота готовых форм, и увеличивается объем выпуска продукции. При этом процесс работы на производстве не требует жестких рамок температуры окружающей среды в цехах. Отформованные изделия наберут свою минимально необходимую прочность даже при отрицательных температурах.

Строители также активно используют хлорид кальция. Применяя эту добавку при заливке бетона, есть возможность сократить сроки проведения данных работ в летнее время и осуществить качественное бетонирование в зимних условиях.

Хлорид кальция как ускоритель

Хлорид кальция существенно подстегивает процесс гидратации основных минеральных компонентов бетона.

Использование этой добавки актуально и летом, и зимой

В зависимости от температуры окружающей среды возможно испарение воды до 40% из объема бетона. Поэтому летом бетон без добавок-ускорителей существенно теряет в своем качестве. Оставшегося количества воды не хватает для полной гидратации цемента: часть цемента сработает вхолостую, и выключится из работы по твердению. При этом испаряющаяся из толщи бетона вода мигрирует к поверхности, образуя направленные сквозные поры. Если такой раствор заливается на улице, то через несколько зимних периодов своей эксплуатации бетон может полностью разрушиться ( за счет процесса замораживания/оттаивания воды в порах). Поэтому для процесса твердения важен начальный период ( первые несколько суток), и, если его правильно отработать, вы получите качественные бетонные изделия, которые без проблем будете эксплуатировать долгие годы.

Вывод: ускоритель схватывания помогает выстроить качественный цементный каркас в первые дни застывания раствора.

Стоит отметить, что хлористый кальций является сильно гигроскопичным веществом*, что дает возможность поддерживать высокую внутреннюю влажность в бетоне, и не допускает его очень быстрого обезвоживания в жару.

Введение в бетон добавки хлорида кальция в количестве 1 – 2% от массы цемента позволяет ускорить начальный процесс набора прочности до 2-х раз. Более точные данные по влиянию хлорида кальция на прочность бетона приведены в таблице 1 ( данные испытаний НИИЖБ г.Москвы).

*Гигроскопичность – способность накапливать, и удерживать в себе влагу.

Бетонирование

Таблица 1 Влияние хлористого кальция на прочность бетона

Возраст бетона, суток

Относительная прочность бетона с добавкой хлористого кальция в % от марочной прочности бетона без добавок (28 суток), на цементах марки М-400

Время схватывания бетона М-200

Бетон М200 (В15) применяется при строительстве неответственных конструкций: бордюров, стяжки под пешеходные нагрузки, легкие заборы. При составлении плана-графика и организации строительных работ с использованием этой марки важно знать скорость схватывания смеси.

Схватывание и затвердевание

Схватывание — процесс, при котором бетон теряет подвижность и переходит в статическое состояние. Твердение (затвердевание) — набор проектной прочности материалом, который начинается сразу после схватывания.

Зачем нужно знать время схватывания М200? Во-первых, от времени схватывания зависит возможность транспортировки на дальнее расстояние. Во-вторых — организация строительно-монтажных работ. Пока не началось схватывание, с бетонным раствором можно производить любые действия: разравнивать, уплотнять. В-третьих — подготовка к уходу за монолитом. Во время набора проектной прочности, продолжительность которого составляет до 28 суток, за бетон осуществляется уход по СП 70.13330.2012.

Читайте так же:
Затирка швов белым цементом

Физическая и химическая модель схватывания

С точки зрения физических процессов схватывание бетона М200 представляет собой процесс, при котором статичная поверхность зерен портландцемента покрывается многогранными кристаллами (алюминат кальция). Количество кристаллов растет в геометрической прогрессии, образуя при этом единую кристаллическую решетку. Между зернами портландцемента возникают прочные пространственные связи.

Химический процесс схватывания основан на запуске нескольких реакций:

  • ЗCaO*Al2OЗ+6H2O -> ЗCaO*Al2OЗ*6H2O — превращение солей алюминия в гидроалюминаты;
  • Ca2SiO4+H2O -> Ca2SiO4*H2O — превращение солей кальция в гидрокальцинаты;
  • ЗCaO*SiO2+H2O -> ЗCa2SiO4*H2O+Ca(OH)2 — превращение силикатных солей в гидросиликаты.

Реакции сопровождаются выделением тепла. В химические реакции участвует примерно 60% воды. Остальные 40% остаются в закрытых ячейках бетонной массы, образуя его пористую структуру.

Время схватывания бетона М200

Схватывание бетона В15 без специальных добавок в составе начинается через 2-2.5 часа после прекращения постоянного перемешивания (миксования). Способность бетонной смеси оставаться в подвижном состоянии, не схватываясь, называется токситропностью. На принципе токситропности основана работа автомобиля с барабаном — миксера. Внутри барабана бетонная смесь М200 постоянно перемешивается и не схватывается, что позволяет доставлять материал на расстояние до 50 км.

Скорость схватывания зависит от окружающей температуры. Для марки М200 зависимость будет следующей:

  1. Ниже нуля — схватывание не происходит, в составе смеси замерзает вода.
  2. Ноль градусов — схватывание начинается через 10-12 часов и продолжается до 24 часов.
  3. От нуля до +20 С — материал схватывается через 2,5-6 часов.
  4. От +25 до +30 С — бетон схватывается через 20-40 минут.
  5. Выше +35 С — схватывание начинается через 10 минут.

При выполнении монолитных работ в зимнее время организуют обогрев монолитных конструкций.

Влияние на схватываемость

Для получения оптимального показателя скорости схватывания материала в его состав, вместе с основными компонентами бетона, вводятся добавки: ускорители и замедлители. Применение добавок регламентирует ГОСТ 24211-2008.

Ускорители ускоряют скорость схватывания марки М200 на 20-30%. Самый простой и бюджетный ускоритель — хлористый кальций. Замедлители применяются для снижения скорости схватывания, например, при выполнении монолитных работ в жару. Популярные замедлители — нитрилотриметиленфосфоновая кислота и цитрат натрия. Благодаря использованию добавок спрогнозировать время схватывания бетона В15 можно с точностью до 90%.

Воздействие температуры на бетон

Ещё в начале прошлого века работы с бетонными смесями были сезонными. В зимний период укладка бетона не производилась из-за потери прочностных характеристик этого стройматериала. Строители пытались разными способами сдвинуть график работ по укладке бетона ближе к началу стойких заморозков. Для этого поверхность бетонного монолита утеплялась при помощи различных органических материалов: древесных опилок, торфяной крошки, сплетенных для этой цели камышовых матов.

Параллельно учёными предпринимались попытки создать бетон, температура схватывания которого была бы ниже нуля градусов. Но поскольку выигрыш во времени строителей не устраивал, продолжался поиск альтернативного утепления (подогрева) бетона при минусовых температурах.

Приемлемая температура смеси

В ходе исследований учёные определили, какая температура бетона наиболее оптимальна для получения качественных конструкций. Её значения находятся в интервале между +5 и +15 градусов. Пограничные показатели, которые прорабатывались исследователями, — минус 20 и плюс 45 град. При значениях наружного воздуха от +5 до -3 град. температура свежеприготовленного продукта не допускается ниже +5 град. Эти показатели подходят для цементной массы в 240 кг/куб. м (при марке М200 и больше). Если цемента используется меньше, температурный показатель смеси должен соответствовать +10 град. или выше.

Способы повышения температуры схватывания бетона

При необходимости в зимний период заливать бетон температура смеси может быть повышена следующими способами:

* за счет применения подогретой воды;

Читайте так же:
Для заливки фундамента использовать цемент марки

* при помощи ввода в смесь морозостойких добавок;

* с помощью электроподогрева;

* методом пропаривания бетонных конструкций в стационарных условиях в специальных автоклавах до набора прочности 80-85%;

* с помощью электропрогрева бетонного монолита, имеющего в своём составе арматуру. При этом коммутация электродов производится по всей площади соприкосновения арматуры с бетоном при подключении тока небольшого напряжения;

* путём использования тепловых пушек с ограждением бетонной смеси.

В зимнее время рекомендуется осуществлять бетонные работы при наружной температуре до -15°С. Обязательно использование противоморозных добавок и способов по прогреву и уходу за бетоном при отрицательных температурах.

Зависимость качества бетона от наружного воздуха

Меняется ли прочность бетона от температуры снаружи? Конечно. При работе со стройматериалом в зимний сезон химическая реакция, сопровождающая набор прочности, затухает. Следовательно, при отрицательных температурах затвердение прекратится. «Спасут» смесь добавки в виде различных солей, способные остановить образование льда.

Бывает ситуация, когда продукт начал схватываться, но потом замёрз. В этом случае после оттаивания он затвердеет только при отсутствии внутренних повреждений замерзающей водой. Специалисты допускают одноразовый цикл заморозки-оттаивания при соблюдении условия: температура смеси в течение трёх суток не должна опускаться ниже +10 градусов.

Если знать определённые требования, то зимой бетонирование можно произвести не хуже, чем в самый благоприятный период. Первое условие — грамотная доставка материала. Наилучший вариант — использовать доставку бетона миксером. Второе — соорудить утеплённую опалубку, ещё лучше позаботиться об обогреве бетонированной площади.

Говоря о том, при какой температуре заливать бетон в летний период, следует отметить факт понижения прочности продукта при +30 градусов. Практическим выходом из положения является увлажнение поверхности бетона водой. В летний период из-за испаряющейся влаги бетон делают более жидким. И конечно же следует сообщить при какой температуре заливать бетон зимой — рекомендуется выполнить все работы до -15С.

Реагируя на воздействие температуры, бетон летом схватывается более равномерно в сырую и прохладную погоду. А если работы производятся в дождливый период, то устойчивость материала к влаге повышают специальным цементом. Чтобы раствор не размыло, площадку накрывают полиэтиленом. Однако в сильные дожди вести бетонные работы под открытым небом не рекомендуется. Если строительство начинается в новой климатической зоне, то специалисты советуют испытать бетон на прочность в лабораторных условиях или на стройплощадке.

Влияющая на бетон температура воздуха — не единственный фактор воздействия на данный материал. Качество продукта зависит от влажности окружающей среды, солнечной радиации, скорости ветра и способов ухода за уложенной смесью.

график набора прочности бетона в зависимости от температуры

Набор прочности бетона с пмд зимой

А теперь, коротко:

— При какой температуре можно заливать бетон? (на улице/ в фундамент/ зимой и летом)?
Оптимальная температура — от 5 до 20 градусов C выше ноля. С использованием добавок и прогревом бетона в зимний период до минус 20 градусов С.

— До какой температуры можно заливать бетон зимой? Можно ли заливать при минусовых температурах?
Работать с бетоном можно и в зимнее время. Необходим заводской раствор хорошего качества, противоморозные добавки в определенных пропорциях. Также необходимо использовать способы защиты и нагрева бетона — укрытие от снега, нагрев тепловым пушками, электродами и др.способами.

— Зависит ли прочность бетона от температуры?
Да, зависит. Чем больше температура не соответствует оптимальной, тем больше страдают показатели бетона. Смотрите график выше.

— До какой температуры можно заливать бетон без добавок?
Рекомендуется использовать добавки при среднесуточной температуре ниже +5 °С

Заливка бетона зимой возможна. Приобретайте качественный бетон и всё пройдет удачно, ваша постройка выдержит любые температуры!

Дополнительные вопросы вы всегда можете задать нашим специалистам по телефону 8(495)7214695.

Заливка бетона зимой — Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector