Raimondirus.ru

RAiMONDI
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

1 Структура лабораторной работы

1 Структура лабораторной работы

Углом естественного откоса называется угол, при котором неукрепленный откос песчаного грунта сохраняет равновесие или угол между образующей откоса свободно насыпанной массы песка и горизонталью.

Угол естественного откоса определяют в воздушно-сухом состоянии и под водой. В воздушно-сухом состоянии он колеблется в пределах  = 30 0 — 40 0 ; под водой  = 20 0 -33 0 . Определение угла естественного откоса производится с помощью прибора УВТ-3. Прибор УВТ-3 (рис. 1) состоит из мерительного столика, обоймы и резервуара. Мерительный столик представляет собой диск, установленный на трех опорах. Столик имеет мелкие отверстия диаметром 0,8 — 1 мм. Шкала, укрепленная в центре столика, имеет деления от 20 до 45. Каждое деление соответствует одному градусу в угловой мере. На мерительном столике установлена обойма конической формы, которая служит для ограждения насыпаемого на столик песка. Резервуар представляет собой полимерный цилиндр высотой 120 мм и диаметром 180 мм.

Рис. 1. Прибор УВТ-3.

Материалы: сухой сыпучий грунт ( песок), вода.

Необходимое оборудование: прибор УВТ-3, совок, резиновая трубка с воронкой

Образец песчаного грунта доводят до воздушно-сухого состояния и методом квартования отбирают пробу массой около 1 кг.

При определении угла естественного откоса песков прибор должен быть установлен на ровную горизонтальную поверхность, наклон которой не превышает 1 .

Определение угла естественного откоса песков в сухом состоянии (с влажностью, соответствующей влажности окружающего воздуха) выполняется в следующей последовательности:

снять крышку и положить её дном книзу;

установить столик в кольцевой паз крышки;

установить на столик обойму;

насыпать песок в обойму, слегка постукивая по ней, до горловины большого усеченного конуса обоймы;

снять осторожно обойму, по вершине образовавшегося конуса произвести отсчет по шкале.

Определение угла естественного откоса песков под водой выполняется в следующей последовательности:

установить столик в кольцевой паз на дне резервуара;

установить обойму на столик;

насыпать песок в обойму, слегка постукивая по ней, до горловины большого усеченного конуса обоймы;

заполнить резервуар водой с помощью резиновой трубки, опущенной на дно резервуара;

снять осторожно обойму, по вершине образовавшегося конуса произвести отсчет по шкале.

Для большей достоверности оценки угла естественного откоса песков рекомендуется выполнить определение несколько раз и взять среднее арифметическое значение показаний.

Все данные, полученные в процессе проведения опыта, заносят в таблицу 1.

По окончании работы прибор промыть чистой водой, протереть и просушить.

Результаты определения угла естественного откоса песка

Угол в градусах

Среднее значение угла

Лабораторная работа № 7

Определение коэффициента фильтрации

Цель: Установить методом лабораторного определения коэффициент фильтрации при исследовании грунтов для строительства.

Фильтрацией называется движение воды в грунтах под действием сил тяжести и разности напоров. Фильтрационные свойства грунтов при их водопроницаемости характеризуются коэффициентом фильтрации К ф , см/с; м/с; м/сут.

Коэффициентом фильтрации называется скорость движения воды в грунте при напорном гидравлическом градиенте, равном 1. Коэффициент фильтрации определяют на образцах нена­рушенного (природного) сложения или нарушенного сложения заданной плотности.

Градиент напора — отношение разности напора воды к длине пути фильтра­ции.

Определение коэффициента фильтрации производится различными лабораторными методами, а более надежно – полевыми методами. Коэффициент фильтрации используется для определения притока воды в котлован, к дренажным и водозаборным устройствам, для расчетов осадки фундаментов во времени, фильтрационных потерь воды через земляные сооружения и т.д. Значения коэффициента фильтрации у песчаного грунта колеблются в пределах 10 -1 -10 -3 см/с.

Результаты определения коэффициента фильтрации должны сопровождаться данными о гранулометрическом составе, влажности, плотности частиц, плотности сухого грунта, границе текучести и раскатывания, степени влажности и коэффициенте пористости.

В работе использован ГОСТ 25584-90 Грунты. Методы лабораторного определения коэффициента фильтрации. Данный метод распространяется на песчаные грунты, применяемые в дорожном и аэродромном строительстве для устройства дренирующих и морозозащитных слоев

Материалы: сухой песок, вода.

Оборудование и приспособления:

прибор Союздорнии для определения коэффициента фильтрации песчаных грунтов Рис. 7.1); трамбовка (рис. 7.2); весы лабораторные; термометр; секундомер; эксикатор; сито с отверстиями диаметром 5 мм; цилиндр мерный вместимостью 100 мл; чашка фарфоровая; емкость для воды вместимостью 8—10 л; линейка металлическая длиной 300 мм; нож

Рис. 7.1 — Прибор для определения коэффициента фильтрации песчаных грунтов

1 — образец; 2 — пьезометр; 3 — трубка; 4 — стакан; 5 — сетка; 6 — перфорированное съемное дно; 7 — подставка; 8 — поддон;

Рис. 7.2 — Трамбовка

1 — направляющая; 2 —фиксатор; 3 — падающий груз; 4 — наковальня

1. Подготовка к испытанию.

К испытанию грунт подготавливают следующим образом:

1.1 Песок и воду, предназначенные для определения коэффициента фильтрации, выдерживают в лаборатории до выравнивания их температуры с температурой воздуха.

1.2 Просеивают через сито с отверстиями 5 мм предварительно высушенный до воздушно-сухою состояния песчаный грунт и определяют его гигроскопическую влажность.

1.3 Отбирают в фарфоровую чашку пробу грунта способом квартования массой не менее 450 г.

1.4 Увлажняют с помощью мерного цилиндра отобранную пробу до оптимальной влажности и выдерживают ее в эксикаторе с водой не менее 2 ч; пески крупные и средней крупности допускается не выдерживать в эксикаторе.

1.5 Для получения образца в предельно рыхлом состоянии трубку заполняют грунтом, насыпая его с высоты 5-10 см без уплотнения, в предельно плотном состоянии – в 3 слоя с уплотнением каждого слоя трамбованием 40 раз. Высота уплотненного грунта в фильтрационной трубке не должна превышать 100 мм.

1.6 Укладывают на поверхность грунта слой гравия (фракция 2—5 мм) толщиной 5—10 мм.

1.7 Устанавливают трубку с грунтом на подставку и вместе с ней помещают в стакан, который постепенно наполняют водой до верха.

1.8 Помещают стакан с трубкой в емкость для воды и заполняют ее до уровня выше слоя гравия на 10—15 мм. После появления воды в трубке над слоем гравия доливают воду в верхнюю часть трубки примерно на 1/3 ее высоты.

1.9 Извлекают стакан с трубкой из емкости и устанавливают его на поддон. В этом случае начальный градиент напора воды в образце грунта равен единице.

2. Проведение испытания

2.1 Испытание проводят в следующем порядке:

— доливают воду в трубку не менее чем на 5 мм выше нулевого деления;

— при вытекании воды через перфорированное дно определяют с помощью секундомера падение уровня воды в пьезометре от 0 до 50 мм.

Указанную операцию повторяют не менее четырех раз, каждый раз доливая воду в трубку на 5 мм выше нулевого деления. В расчет принимают среднее время падения уровня воды. В случае отклонений отдельных отсчетов от среднеарифметического значения более чем на 10 % следует увеличить число определений.

Читайте так же:
Как наносить антисептическую грунтовку

При времени падения уровня воды в пьезометре более 2 мин допускается уменьшать высоту падения уровня.

При времени падения более 10 мин допускается проводить испытание при начальном градиенте напора, равном двум. В этом случае трубку с подставкой извлекают из стакана и ставят непосредственно на поддон.

2.2 В течение всего испытания не допускается снижение уровня воды в трубке ниже слоя гравия.

2.3 В работе необходимо определение максимальной плотности сухого грунта при оптимальной влажности и плотности сухого грунта. Разность между плотностью сухого грунта в трубке и максимальной плотностью, установленной по ГОСТ 22733—77, не должна превышать 0,02 г/см 3 . В противном случае испытание повторяют.

2.4 Полученные данные записывают в журнал (таблица 7.1)

Журнал испытаний образцов

Начальный напор H 0 , см

Время начала фильтрации отдельных заме­ров

Падение уровня воды в пьезо­метре S, см

Температура во­ды Т  , 0 С

Коэффициент фильтрации К 10 , м/сут

Среднее значение К 10, м/сут

3. Обработка результатов

3.1 Коэффициент фильтрации песчаного грунта К 10 , м/сут, приведенный к условиям фильтрации при температуре 10 С, вычисляют по формуле:

где h — высота образца грунта в трубке, см;

S – наблюдаемое падение уровня воды в пьезометре, отсчитанное от первоначального уровня, см;

t – время падения уровня воды, с;

Т = (0,7+0,03Т ф ) – поправка для приведения значения к условиям фильтрации воды при температуре 10ºС, где Т ф – фактическая температура воды при опыте, ºС;

864 – переводной коэффициент (из см/с в м/сут).

H 0 — начальный напор.

— безразмерный коэффициент вычисляют по таблице 7.2.

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 0,33

0,010 0,020 0,030 0,040 0,051 0,062 0,073 0,083 0,094 0,105 0,117 0,128 0,139 0,151 0,163 0,174 0,186 0,196 0.210 0,223 0,236 0,248 0,261 0,274 0,288 0,301 0,315 0,329 0,346 0.357 0.371 0,385 0,400

0,34 0,35 0,36 0,37 0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49 0.50 0,51 0,52 0,53 0,54 0,55 0,56 0,57 0.58 0,59 0,60 0.61 0,62 0,63 0,64 0,65 0,66

0,416 0,431 0,446 0,462 0,478 0,494 0,510 0,527 0,545 0,562 0,580 0,598 0,616 0,635 0,654 0,673 0,693 0,713 0,734 0,755 0,777 0,799 O.S21 0,844 0,868 0.892 0,916 0,941 0,967 0,994 1,022 1,050 1,079

0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,88 0,89 0,90 0.91 0,92 0,93 0,94 0.95 0.96 0,97 0,98 0,99

1,109 1,139 1,172 1,204 1,238 1,273 1,309 1,347 1,386 1,427 1,470 1,514 1,561 1,609 1,661 1,715 1,771 1,833 1,897 1,966 2,040 2,120 2,207 2,303 2,408 2,526 2,659 2,813 2,996 3,219 3,507 3.912 4,605

3.2 Коэффициент фильтрации вычисляют для каждого отсчета по пьезометру. Число частных определений коэффициента фильтрации должно быть не менее трех.

Качество грунтов при строительстве

Качество грунтов при строительстве

М ы уже говорили, что перед тем, как начинать проектирование и строительство частного дома необходимо исследовать и определить грунт на своем участке. Информация о составе грунта на вашем земельном участке поможет архитектору выбрать правильный фундамент, который послужит надежной основой для вашего будущего дома. Вот о том, какое бывает качество грунтов при строительстве, мы и поговорим в этой статье.

Как определить грунт на своем участке

Хороший дом строится на надежном фундаменте, а фундамент на грунте. Под грунтом понимают слой земли, на котором закладывается фундамент дома. Грунт является основанием фундаментов и воспринимает на себя все нагрузки от строения и природных факторов, воздействующих на него. В зависимости от местности, в которой ведется или предполагается строительство дома, грунты могут существенно отличаться друг от друга. Для правильной привязки проекта дома к местности нужен целый ряд показателей, среди которых: тип грунта, глубина его промерзания и насыщенность почвенными водами, уровень грунтовых вод, рельеф поверхности и т. д.

Пласты грунтов

В результате геологических процессов, в недрах земли и на ее поверхности, тысячелетиями создавались пласты грунтов, которые могут быть различными не только в пределах определенного региона, но и на более малых площадях. Неравномерность пластовых отложений может быть даже в пределах одной строительной площадки. Особенно если это связано со сложными геологическими условиями: склоны, овраги, болотистые местности.

На физические свойства основания оказывает существенное влияние не только состав грунтов, глубина расположения определенных их пластов, но и их водонасыщенность, то есть уровень грунтовых вод, влияние паводковых явлений и атмосферной влаги.

Геологическая обстановка на участке

Исследование грунтов на участке

Поэтому при строительстве дома, и в особенности его опорной его части — фундамента, предшествует изучение гидрогеологической обстановки на строительной площадке и сезонность ее изменения. Знание геологической обстановки позволит правильно выбрать тип фундаментов, площадь их опорного основания и глубину его заложения. При словах «изучение гидрогеологической обстановки» у Вас может возникнуть мысль о сложном геологическом оборудовании с буровыми вышками. Наличие такого оборудования совсем не обязательно на большинстве площадей, особенно при малоэтажном строительстве. Конечно, при сложных геологических условиях могут понадобиться и такие меры, но в большинстве случаев можно обойтись опытом соседей и бурением нескольких скважин или разработки шурфов в пределах строительной площадки.

Качество грунтов

Покосившиеся заборы на соседних участках, деформации фундаментов существующих зданий, трещины на стенах могут много сказать опытному строителю. Причиной этих явлений может быть малая глубина заложения фундаментов или пренебрежение геологическими особенностями участка. Особенно важно знание гидрогеологической обстановки при сооружении двух — трехэтажных домов с подвалом, защита которого от влияния грунтовой влаги — задача довольно сложная и трудоемкая.

Технология отбора грунта на участке

Исследование грунтов на участке

Как правило, отбор грунта осуществляют с помощью ручного зонда в шурфах или скважинах глубиной до 5 м для малоэтажного деревянного дома и до 7—10 м — для кирпичных или каменных домов. Скважина, пробуренная на участке, может принести много полезной информации. По изменениям вида грунтов можно определить их физические свойства и глубину расположения, толщину пластов, уровень грунтов и его изменение в течение нескольких сезонов. Особенно важно знать уровень грунтов в периоды обильных дождей и таяния снега. В это время грунт накапливает много влаги, которая может оказать влияние на эксплуатационные характеристики фундамента, особенно в подвальной части дома. При высоком уровне грунтовых вод придется искусственно его понижать, соорудив дренажную систему или водоотводящую канаву. Наиболее актуальной может стать задача сооружения дренажной системы при строительстве дома с подвалом.

Читайте так же:
Естественный откос для грунтов

Виды грунтов и их характеристики

Для оценки технической пригодности грунтов имеют значение:

  • Связанность (сцепление), то есть прочность связи между частицами грунта;
  • Размер и форма частиц;
  • Однородность состава;
  • Коэффициент трения одной части массы грунта о другую (угол естественного откоса);
  • Влажность и влагоемкость, то есть наличие воды в грунте и то ее максимальное количество, которое грунт может принять;
  • Водопроницаемость, водоудерживающая способность, то есть способность грунта удерживать поглощенную воду вопреки действию сил, направленных на ее удаление;
  • Размываемость растворимость в воде, пластичность, сжимаемость, разрыхляемость и т.д.

Существует несколько видов грунта:

  • Скалистые;
  • Обломочные;
  • Песчаные (мелкозернистые и пылеватые пески);
  • Пылеватые (плывуны);
  • Суглинистые;
  • Глинистые.

Каждый из них характеризуется определенными показателями.

Скалистые грунты

Скалистые грунты

Скалистые грунты считаются самыми надежными. Они достаточно прочны, не проседают и не размываются. Вспучивание в зимнее время таким грунтам не грозит. При строительстве дома на участке со скалистым грунтом можно обойтись без заглубления и возводить фундамент непосредственно на поверхности грунта.

Обломочные или хрящеватые грунты

Хрящеватые грунты

Обломочные или хрящеватые грунты содержат обломки камней и вкрапления гравия. Они не размываются и не сжимаются. В условиях обломочных или хрящеватых грунтов рекомендуется устраивать фундаменты с заглублением не более 50 см.

Песчаные грунты

Песчаные грунты

Песчаные грунты, состоящие из мелкозернистых и пылеватых песков, имеют свойство проседать, то есть сильно уплотняться под нагрузкой. Эти грунты не задерживают воду и в зимний период незначительно промерзают. Заглубление фундамента на песчаных грунтах рекомендуется проводить на глубине от 40 до 70 см.

Пылеватые грунты

Пылеватые грунты(плывуны)

Особого внимания при строительстве дома заслуживают пылеватые грунты, которые часто называют плывунами. Устраивать фундамент на таких грунтах довольно сложно и опасно. Строительство дома на плывунах лучше всего вести с опытными строителями.

Суглинистые грунты

Суглинистые грунты

Суглинистые грунты занимают промежуточное положение между песчаными и глинистыми. В их составе от 3 до 30% глины. При наличии в грунте менее 10% глины грунт называется супесчаным, и при повышенном содержании — суглинистым.

Глинистые грунты

Глинистые грунты

Глинистые грунты — наихудший из вариантов, который может встретиться при строительстве дома. Грунты такого вида могут сжиматься, размываться и вспучиваться при промерзании. В этом случае глубина закладки фундамента устраивается на всю глубину промерзания.

Следует отметить, что в сухом состоянии глинистые грунты могут служить хорошим основанием (в этом случае их относят условно к непучинистым), а при значительном насыщении водой и при малой плотности становятся довольно жидкими и сильно вспучиваются при промерзании.

Просадочные грунты

Глинистые грунты иногда называют просадочными, так как, находясь в напряженном состоянии под действием нагрузки от строения, они дают просадку.

Различают два вида просадочных грунтов:

  • грунты, просадка которых от собственного веса не превышает 5 см;
  • грунты, просадка которых от собственного веса превышает 5 см.

Пучинистость грунтов

Вспучивание грунтов

Основной причиной неустойчивости или разрушения фундамента является вспучивание некоторых грунтов в зимний период, а это, в свою очередь, связано с глубиной промерзания грунта в районе строительства и с глубиной залегания грунтовых вод. Сила вспучивания настолько велика, что в состоянии приподнять даже очень большие здания, и справиться с ней можно только в том случае, если будут соблюдены все рекомендации при устройстве фундамента.

Экономия средств и времени на геологические изыскания противопоказана и может повлечь за собой ряд неприятных последствий. В регионах со сложными грунтами, к числу которых относится и Подмосковье, нельзя начинать строительство без проведения этих работ. Только наличие полной информации об инженерно-геологической обстановке позволит грамотно выполнить строительную часть проекта дома. При этом шурфов (скважин) требуется не менее четырех (в первую очередь по углам будущего строения).

Глубина промерзания участка

Глубина промерзания грунтов в ряде случаев оказывает большое влияние на физические процессы, связанные с нагрузками на конструктивные элементы подземной части дома. Глубина промерзания грунта не является величиной постоянной для данной местности и может зависеть от места расположения участка. Так, грунт на участке, расположенном в низменности и защищенном от ветра, может промерзать на меньшую глубину, чем на участке, расположенном на возвышенности, продуваемой всеми ветрами. Но, в любом случае, нужно ориентироваться на глубину сезонного промерзания, являющуюся средней для данного региона. Эти сведения можно получить в любой проектной организации.

Глубина промерзания грунтов

Уровень грунтовых вод

На поведение многих грунтов существенное влияние оказывает уровень подземных вод. В идеале глубина промерзания должна быть меньше глубины залегания грунтовых вод; в том случае, когда показатель глубины промерзания превышает показатель глубины залегания грунтовых вод, отмечается их промерзание, следствием которого является вспучивание грунта.

Если бы вспучивание было равномерным, оно не создавало бы проблем: зимой грунт поднимался бы равномерно, а весной так же равномерно опускался.

Грунты с отрицательной или нулевой температурой, имеющие в своем составе ледяные включения, называют мерзлыми. Если на протяжении нескольких лет мерзлые грунты не подвергались оттаиванию, их называют вечномерзлыми.

Вечномерзлые грунты, в свою очередь, делятся на три категории:

  • Твердомерзлые;
  • Пластичномерзлые;
  • Сыпучемерзлые.

В строительных организациях при работе с грунтами учитывают такую их характеристику, как связанность, которая изменяется в зависимости от влажности грунтов. Связанность проверяют углом естественного откоса, который образуется откосом свободно насыпанного грунта и горизонтальной плоскостью.

Во избежание обрушения откосов при копании траншей для фундаментов необходимо правильно определить угол естественного откоса грунтов.

Определение углов естественного откоса грунтов (в градусах)

Углы естественного откоса

При строительстве дома необходимо учитывать такой фактор, как глубина промерзания грунта, зависящая от географического положения местности. Так, средняя глубина промерзания для следующих городов составляет:

  • Волгоград, Псков, Великие Луки, Смоленск — 1,2 м;
  • Пенза, Саратов, Кострома, Вологда — 1,5 м;
  • Москва, Санкт-Петербург, Новгород, Воронеж — 1,4 м.

Качество грунтов при строительстве очень важный показатель, поэтому на анализе грунта своего участка нельзя экономить. В следующей статье я расскажу о смете на строительство дома.

neprohogi

Мухин Ю.И. о странностях лунных кадров, в которых были замечены прожектора: «Пара слов о том, что люди, уверенные в том, что американцы были на Луне, считают попавшие в многочисленные фотографии осветительные прожектора съёмочного павильона бликами на объективе. Прожектора попали и в кадры этого фильма, и они хорошо отличимы от бликов. (При повороте камеры блики меняют форму и следуют за камерой, а прожектора остаются неподвижными.)»
К сожалению, нет указанных кадров в публикации, чтобы оценить правильность этого утверждения. Но кадры, где отразились необычные объекты, очень похожие на прожектора, были.

Читайте так же:
Как необходимо наносить грунтовку


http://www.aulis.com/jackimages/12dinespotlight.jpg

Мухин Ю.И. о следах и угле естественного откоса «лунного грунта»

«По поводу следов подошв астронавтов «на Луне» интересны такие данные из этой книги. Исследователи пишут, что лунный грунт «легко формуется и сминается в отдельные рыхлые комки. На его поверхности чётко отпечатываются следы внешних воздействий — прикосновений инструмента. Грунт легко держит вертикальную стенку[10]…» Из этого формально следует, что протекторы обуви астронавтов, обжимая грунт сверху и с боков, могли оставить чёткий след. (Хотя мне трудно понять, как исследователи могли оценить формуемость грунта, имея в своём распоряжении образец объёмом менее стопки). Но исследователи и пишут, что грунт «…при свободном насыпании имеет угол естественного откоса в 45°» (и дают фото). Т. е. грунт без прессования не «держит стенку». Если мы на пляже насыплем мокрый песок в стакан, а затем перевернём стакан и снимем его, то песок сохранит внутреннюю форму стакана, он будет держать стенку и без прессования, при свободном насыпании. А если мы насыплем в стакан сухой песок и перевернём его, то песок растечётся, образуя конус с углом естественного откоса, т. е. он стенку не держит.
Отсюда следует, что след протектора подошв американских астронавтов должен быть чётким только в центре, а по краям обуви, где грунт не прессуется, он должен осыпаться с углом 45°. Такой след — с осыпавшимися краями — и оставлял на Луне наш луноход. На американских фото грунт держит стенку на отпечатках следов и в центре их, и с краёв. Т. е. это не лунный грунт, это мокрый песок.»
Пример с мокрым песком в детском стаканчике правильный
Можно конечно поспорить с таким утверждением, где напрямую увязывается угол естественного откоса грунта и содержание воды в грунте. Это некорректный метод исследования и неправильный вывод. Достаточно посмотреть на следующую таблицу:

У сырого песка и мокрого песка близкие углы естественного откоса. И они не равны 80-90*. При рассмотрении процесса образования четкого следа на грунте необходимо рассматривать другие характеристики грунта. Это во первых, отношение высоты откоса к заложению:

Оптимальное соотношение 1:0, чтобы получить четкий след с краями следа 90*. При этом надо учитывать, что чрезмерное содержание воды в песке не позволит на таком грунте оставить чёткий след , где край следа сохраняет прямоугольную форму. Стенки следа просто поплывут. И мы приходим к следующей характеристики грунта.
И это, во-вторых, сцепление — сопротивление грунта сдвигу. Сила сцепления для песчаных грунтов составляет 3. 50 кПа, для глинистых — 5. 200 кПа. Чем больше величина сцепления тем более четкий грунт, но опять же большая величина сцепления не позволит оставить след на грунте вообще.
В-третьих, это водоудерживающая способность или сопротивляемость грунта прониканию воды, она очень высока у глинистых грунтов и низка у песчаных. По этой причине последние называются дренирующими, т.е. хорошо пропускающими воду, а первые — недренирующими.
При нажатии обуви на влажный грунт вода растекается вниз и вбок от поверхности следа и соответственно меняется свойство грунта по краям следа. И здесь тоже не все так гладко с появлением на грунте четкого следа. Если по краям вытесненная вода достигнет определенного уровня, края следа потекут.
И наконец, версия о том, что четкий след на грунте появляются благодаря жидкой воде в этом грунте рушится при рассмотрения оставления четкого следа обуви на снегу или на рыхлом подмороженном грунте, где жидкой воды нет:

Угол естественного откоса снега колеблется между 30* и 40*, как и сухого грунта. Так что увы, Мухин Ю.И. неправильно оценил эту ситуацию.
Американский след был , скорее всего оставлен на грунте, где не было жидкой воды, а была вода замороженная, и сам рыхлый грунт был подморожен. Следы на таком грунте появляются четкие и держаться долго, пока вода в грунте не растает и не испариться из грунта, если это песок. Если это глина, например, то и тогда след сохраниться, хотя в грунте будет минимум влаги.

И угол естественного откоса сухой глины здесь никак не проявляется. Края следа на глинистой почве после ее высыхания не осыпаются. Версия Мухина Ю.И. о прямой связи между углом естественного откоса , наличием жидкой воды в грунте и появлением четкого отпечатка на таком грунте, не проходит.
Адвокаты Лунного Обмана США сочиняют сказки про «липкий» грунт в условиях вакуума и давят на свойства грунта, который указан выше: сцепляемость. Так вот здесь большая проблема для такой версии. Частицы, фракции грунта в этом случае должны были прилипнуть к резиновой подошве намертво при давлении подошвы обуви на такой грунт и в этом случае оставление следа на почве с четким контуром и стенками под углом 90* просто невозможно.

Укрепление грунтов

Обычно при возведении земляных сооружений их боковые стенки устраивают таким образом, чтобы угол откоса был меньше угла естественного откоса. Однако очень часто, особенно в городских условиях, из-за стесненности устроить откосы невозможно. Кроме того, при намокании даже в условиях правильно выполненных откосов верхняя часть выемки может обрушиться. Такие случаи происходят из-за того, что при намокании грунта его угол естественного откоса может резко измениться (например, у глины с 45 до 15°, у суглинка с 50 до 20° и т.д.).

а — схема обрушения верхней части откоса при намокании; б — инвентарные трубчатые распорные рамы; в, г, д — крепления соответственно шпунтовое, консольное, консольно-распорное; е, ж — крепления распорное и подкосное; 1 — анкерная свая; 2 — оттяжка; 3 — маячная свая (опорная стойка); 4 — направляющая свая; 5 — шпунтовое ограждение; 6 — щиты (доски); 7 — стойки распорной рамы; 8 — распорка.

Шпунтовое ограждение является дорогостоящим способом, применяемым при разработке выемок в водонасыщенных грунтах вблизи существующих зданий и сооружений. Шпунт забивают до разработки выемки, чем обеспечивают устойчивое и естественное состояние грунта за ее пределами.

Читайте так же:
Если покрасить потолок без грунтовки

Крепление консольного типа состоит из стоек — свай, заземленных нижней частью в грунте глубже дна выемки. Они служат опорами для щитов или досок, непосредственно воспринимающих давление грунта. Крепление консольного типа целесообразно при глубине выемки до 5 м. В траншеях значительной глубины используют консольно-распорное крепление, отличающееся от консольного тем, что между стойками в верхней их части перпендикулярно оси траншеи устанавливают распорки.

Распорное (рамное) крепление — наиболее простое в исполнении — применяется при устройстве траншей глубиной до 4 м в сухих или маловлажных грунтах. Оно состоит из стоек, горизонтальных досок или щитов и распорок, прижимающих доски или щиты к стенкам траншеи.

При отрывке траншей деревянные или металлические крепления устанавливают экскаватором непосредственно при отрывке выемки. Экскаватор устанавливает блоки и по мере углубления траншеи придавливает ковшом их верхние торцы.

При создании вокруг разрабатываемых выемок постоянных водонепроницаемых завес или в случае повышения несущей способности грунтовых оснований применяют следующие способы искусственного закрепления грунтов: цементацию и битумизацию; химический, термический, электрический, электрохимический, механический и др.

Цементация и битумизация заключается в инъецировании цементного раствора или разогретых битумов. Эти способы применяют для пористых грунтов с высоким коэффициентом фильтрации, а также трещиноватых скальных пород.

Термическое закрепление заключается в обжиге лессовых грунтов раскаленными газами, нагнетаемыми через скважины в их поры. Газы подаются в толщу грунта вместе с воздухом через жаропрочные трубы в пробуренных скважинах.

Электрическим способом закрепляют влажные глинистые грунты. Способ заключается в использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5. 1B/см и плотностью 1. 5A/м2. При этом глина осушается, уплотняется и теряет способностью к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током в грунт вводят через трубу, являющуюся катодом, растворы химических добавок (хлористый кальций и др.). Благодаря этому интенсивность процесса закрепления грунта возрастает.

Вытрамбовывание котлованов осуществляют с помощью тяжелых трамбовок, подвешенных на стреле крана. Этот способ менее сложен, чем способ грунтовых подушек, поскольку не требует замены грунта основания. Уплотнение котлованов значительных размеров может осуществляться гладкими или кулачковыми катками, трамбующими машинами, виброкатками и виброплитами.

Коэффициент откоса грунта что это

Левый откос канала № 101, примыкающий к территории шлюза № 1 Волго-Донского водного пути, является опасным в оползневом отношении земляным сооружением.

Он имеет очень сложное геологическое строение, возведен на месте бывшего оврага из пластичных шоколадных глин с прослойками водонасыщенного песка. Уровни грунтовых вод находятся на высоких по отношению к подошве откоса отметках. В 1964 году на откосе произошел оползень, спровоцированный эрозионными процессами.

После этого в 1966 году институтом «Гидропроект» выполнены инженерно-геологические изыскания на левом склоне канала [1] для определения физико-механических свойств грунтов, характера их обводнения, водопроницаемости и степени устойчивости грунтового массива.

По результатам этих изысканий составлен геологический разрез площадки, который представлен современными техногенными образованиями, верхнечетвертичными морскими отложениями хвалынского горизонта и среднечетвертичными аллювиальными отложениями хазарского горизонта.

В середине 1980-х начале 1990-х годов сотрудниками Ленинградского института водного транспорта были проведены наблюдения за деформациями откоса и расчет его устойчивости. Расчетные значения коэффициентов устойчивости оказались меньше нормативного значения и немногим больше единицы. На основании этого сделан прогноз о том, что в случае продолжения деформаций, примерно через 15 лет возможен новый оползень, т.е. склоновые процессы могут активизироваться в настоящее время [2].

Была поставлена задача определения критерия безопасной эксплуатации.

Критерии безопасной эксплуатации грунтового гидротехнического сооружения — это, установленные с учетом класса сооружения, качественные признаки и количественные показатели, характеризующие его безопасность и безопасность окружающей среды при различных режимах и условиях эксплуатации, технического обслуживания и ремонта, ввода и вывода его из эксплуатации.

Единственная ситуация, связанная с левым откосом канала № 101, которая может нарушить режим безопасной эксплуатации или привести шлюз № 1 в нерабочеспособное состояние, является возникновение оползня, т.е. переход грунтового массива в неустойчивое состояние.

Под неустойчивым состоянием грунтового массива при условии постоянства суммарного вектора внешних воздействий понимается такое его состояние, когда незначительное по величине изменение физико-механических свойств грунта «может нарушить равновесие массива, причем произойдут изменение структуры грунта и движение массива до тех пор, пока грунт не приобретет нового состояния равновесия» [3].

Для грунтового откоса качественным признаком возможности его безопасной эксплуатации является устойчивость, а количественным показателем — запаса коэффициент устойчивости. Качественный признак может быть определен визуально и при помощи геодезических измерений. Количественный показатель определяется при помощи расчета.

Согласно [4] для обоснования надежности и безопасности гидротехнических сооружений «должны выполняться расчеты напряженно-деформированного состояния системы «сооружение-основание» на основе применения современных, главным образом, численных методов механики сплошной среды с учетом реальных свойств материалов и пород оснований. Обеспечение надежности системы «сооружение-основание» должно обосновываться результатами расчетов по методу предельных состояний их прочности, устойчивости».

Все инженерные сооружения шлюза № 1 Волго-Донского водного пути относятся к сооружениям II класса. При расчете сооружений II класса по I группе предельных состояний коэффициент надежности (в данном случае коэффициент запаса устойчивости) назначается равным К=1,2 [4].

Нами проведен расчет устойчивости исследуемого объекта с использованием компьютерной программы «GEO-SLOPE office» (версия 4.21) и программ «Устойчивость» и «STRESS-PLAST» [5; 6].

Первая из этих программ реализует несколько интерпретаций метода Шведской геотехнической комиссии, разработанного К.Е.Паттерсоном в 1916 году [7] (методы Янбу, Бишопа и др.), и основанного на гипотезе о круглоциллиндрической форме поверхности скольжения.

Во второй и третьей программах формализованы методики [8], справедливая при условии, что в приоткосной зоне отсутствуют области пластических деформаций грунта, и [9], справедливая для условий смешанной задачи, построения наиболее вероятной поверхности скольжения, основанные на анализе напряженно-деформированного состояния грунтового массива методом конечных элементов. Под наиболее вероятной линией скольжения подразумевается единственная линия из всех, которые возможно построить в данном грунтовом массиве, имеющая при всех прочих равных условиях минимальное значение коэффициента запаса устойчивости К.

Обработка и анализ результатов вычислений показали: если в качестве расчетных физико-механических характеристик грунта взять их значения, полученные в условиях полного водонасыщения (условный уровень грунтовых вод находится на уровне дневной поверхности откоса), то численные значения коэффициентов устойчивости, вычисленные при помощи программы «GEO-SLOPE office» (версия 4.21), находятся в интервале КÎ[0,949-2,15], а при помощи компьютерных программ «Устойчивость» и «STRESS PLAST» — КÎ[0,74-3,16].

Читайте так же:
Как зашкурить машину перед грунтовкой

То есть, при этих условиях существуют поверхности скольжения, для которых численные значения расчетных коэффициентов устойчивости меньше нормативной величины.

Если в качестве численных значений расчетных характеристик грунта использовать значения физико-механических свойств, полученные при испытании образцов грунта естественной влажности с учетом действительного положения уровня грунтовых вод, то численные значения величины коэффициента устойчивости вычисленные для любой возможной в данном грунтовом массиве поверхности скольжения, будут значительно больше нормативной величины К=1,2.

Расчет угла откоса грунта

Угол естественного откоса — угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью. Иногда может быть использован термин «угол внутреннего трения».

Частицы материала, находящиеся на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от удельного веса материала.

По углам естественного откоса определяются максимально допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей. угол естественного откоса из различных материалов

Список из различных материалов и их угла естественного откоса [источник не указан 134 дня] . Данные приблизительные.

Материал (условия)Угол естественного откоса (градусы)
Пепел40°
Асфальт (измельченный)30-45°
Кора (деревянные отходы)45°
Отруби30-45°
Мел45°
Глина (сухой кусок)25-40°
Глина (мокрой раскопки)15°
Семена клевера28°
Кокос (измельченный)45°
Кофе зерна (свежие)35-45°
Земля30-45°
Мука (пшеница)45°
Гранит35-40°
Гравий (насыпной)30-45°
Гравий (натуральный с песком)25-30°
Солод30-45°
Песок (сырой)34°
Песок (с водой)15-30°
Песок (влажный)45°
Пшеница сухая28°
Кукуруза сухая27°

См. также

  • Призма обрушения[1]

Примечания

  1. Призма обрушения

Wikimedia Foundation . 2010 .

  • БДСМ
  • Судоподъёмник
Полезное
Смотреть что такое «Угол естественного откоса» в других словарях:

угол естественного откоса — Предельный угол, образуемый свободным откосом сыпучего грунта с горизонтальной плоскостью, при котором не происходит нарушения устойчивого состояния [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] угол… … Справочник технического переводчика

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА — максимальный угол наклона откоса, сложенного г. п., при котором они находятся в равновесии, т. е. не осыпаются, не оползают. Зависит от состава и состояния г. п., слагающих откос, их водоносности, а для глинистых п. и высоты откоса. Геологический … Геологическая энциклопедия

Угол (естественного) откоса — (Böschungswinkel) – угол относительно горизонтали, образующийся при насыпании сыпучего материала. [СТБ ЕН1991 1 1 20071.4] Рубрика термина: Общие, заполнители Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

угол естественного откоса — Предельная крутизна склона, при которой слагающие его рыхлые отложения находятся в равновесии (не осыпаются). Syn.: естественный откос … Словарь по географии

угол естественного откоса — 3.25 угол естественного откоса : Угол, образованный образующей откоса с горизонтальной поверхностью при отсыпке сыпучего материала (грунта) и близкий к значению его угла внутреннего трения. Источник … Словарь-справочник терминов нормативно-технической документации

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА — угол, при котором неукрепленный откос песчаного грунта еще сохраняет равновесие, или угол, под которым располагается свободно насыпаемый песок. У. е. о. определяется в воздушно сухом состоянии и под водой … Словарь по гидрогеологии и инженерной геологии

угол естественного откоса — [angle of repose (rest); scrap charging angle] угол у основания конуса, образованный при свободной насыпке сыпучего материала на горизонтальную плоскость; характеризует сыпучесть этого материала; Смотри также: Угол угол смачивания угол касания … Энциклопедический словарь по металлургии

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА — предельный угол, образуемый свободным откосом сыпучего грунта с горизонтальной плоскостью, при котором не происходит нарушения устойчивого состояния (Болгарский язык; Български) ъгъл на естествения откос (Чешский язык; Čeština) úhel přirozeného… … Строительный словарь

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА ПОЧВЫ — (грунта) наибольшая возможная величина угла, который образует с горизонтальной поверхностью устойчивый откос насыпи сухой почвы (грунта), или влажной почвы (грунта) под водой. Экологический словарь, 2001 Угол естественного откоса почвы (грунта)… … Экологический словарь

УГОЛ ЕСТЕСТВЕННОГО ОТКОСА ПОЧВЫ — (грунта) наибольшая возможная величина угла, который образует с горизонтальной поверхностью устойчивый откос насыпи сухой почвы (грунта), или влажной почвы (грунта) под водой. Экологический словарь, 2001 Угол естественного откоса почвы (грунта)… … Экологический словарь

ПроСопромат.ру

Технический портал, посвященный Сопромату и истории его создания

Устойчивость откосов идеально сыпучего тела (грунта) (с=0, φ≠0)

Необходимость расчета устойчивости откосов появляется не только при строительстве дорожных насыпей и выемок, строительных котлованов, но и при решении проблемы захоронения бытовых и промышленных отходов. При разработке котлованов для захоронения отходов, вертикальной планировке площадок с уступами приходится оценивать устойчивость массивов грунтов в откосах. Устройство пологих откосов резко удорожает строительство. Крутые откосы могут привести к аварии. Нужно уметь определять оптимальную крутизну откосов хранилищ.

Идеально сыпучее тело характеризуется отсутствием сцепления (с=0). Рассмотрим откос с углом заложения α и углом внутреннего трения φ песка, слагающего откос:

Рис 1.

Исследуем условия равновесия частицы грунта А, свободно лежащей на поверхности откоса. Вес частицы F разложим на нормальную N и касательную составляющую Т, стремящуюся сдвинуть частицу вниз. Грунт обладает только внутренним трением, поэтому устойчивость (неподвижность) частицы будет обеспечена, пока сдвигающая сила Т будет равна удерживающей силе трения Т′=f∙N или меньше ее.

Учитывая, что N=F∙cosα, T=F∙sinα, из уравнения проекций на наклонную грань следует:

F∙sinα=f∙Fcosα, откуда tgα=f. Но коэффициент трения f=tgφ. Значит α=φ, то есть предельный угол откоса сыпучих грунтов равен углу внутреннего трения, отождествляемому часто с углом естественного откоса.

Для обеспечения устойчивости откоса сила, удерживающая частицы А, должна быть больше сдвигающих сил: Т≤Т′.

Если обозначить коэффициент надежности γn, тогда это условие примет вид:

γntgα≤ tgφ. Обычно принимают γn=1,1÷1,2.

Если уровень подземных вод в массиве сыпучего грунта находится выше подошвы откоса, возникает фильтрационный поток, выходящий на поверхность откоса. В грунте возникает гидродинамическое давление, что приводит к уменьшению устойчивости откоса (рис.1, б). Поэтому, рассматривая равновесие частицы А на поверхности откоса, к сдвигающей силе необходимо добавить гидродинамическую составляющую D=γв∙n∙i, где:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector